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1. INTRODUCTION

Hydrodynamic simulations of potential lunar-forming
impacts (Kipp and Melosh, 1986, 1987; Benz et al., 1986,
1987, 1989; Cameron and Benz, 1991; Cameron, 1997;
Cameron and Canup, 1998; see also chapter by Cameron,
2000) demonstrate the plausibility of the basic impact hy-
pothesis. These simulations predict the ejection of roughly
a lunar-mass worth of material into orbit following an off-
center impact by an object with a mass close to that of Mars.
The resulting debris cloud is centrally condensed, with a
mean orbital radius of 2–3 R, or at about the Roche limit
for silicate density materials (aR = 2.9 R ), where R is the
radius of the Earth. The predicted initial state of material
ejected into this protolunar cloud is dependent on the simu-
lation specifics, with temperatures ranging from those of a
vaporous cloud to those of a mixture of solid and molten
material.

Initial modeling of the evolution of an impact-generated
disk focused on how such a disk might viscously spread and
become subject to collapse due to gravitational instability
(Ward and Cameron, 1977, hereafter WC77; Thompson and
Stevenson, 1988). Another question was why a disk of ma-
terial roughly centered on the Roche limit should yield a
single large moon, while similarly located systems around
the outer planets consisted of rings and multiple small sat-
ellites. The first model of lunar accumulation from an im-
pact-generated protolunar disk utilized a statistical model

of accretion that included tidal inhibition of accretion in the
region surrounding the Roche limit (Canup and Esposito,
1996). Canup and Esposito found that systems of multiple
small moons appeared to be probable outcomes. They sug-
gested that the easiest way to form the Moon was to begin
with a lunar-mass of material exterior to aR, where aR is the
Roche limit radius, and that the most favorable impacts
appeared to be those with about twice the angular momen-
tum of the Earth-Moon system.

Accretion simulations utilizing direct N-body orbit inte-
grations with ~103 initial ~100-km-sized bodies (Ida et al.,
1997, hereafter ICS97) revealed disk-wide scattering among
the moonlets. These interactions cleared the inner protolunar
disk, leaving a single large moon at 3–4 R in two-thirds
of cases, and two large moons in one-third of cases. Scat-
tering onto the Earth resulted in significant mass loss from
the disk and net accretion yields below 50%. Thus an ini-
tial disk mass of at least 2 M (where M is lunar mass)
appeared required to yield a lunar-sized moon.

Recently, Kokubo et al. (2000, hereafter KIM00) have
performed similar simulations using N = 10,000 particles.
While the accretion yields found by KIM00 are similar to
those in ICS97, the KIM00 simulations resolve the devel-
opment of spatial structure in the disk that was only vaguely
observable in the ICS97 runs. This structure is found to be
the dominant mechanism for angular momentum and mass
transfer in the N-body simulations. About 10% of the KIM00
runs produced two large moons outside the Roche limit.
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We review current models for the accumulation of the Moon from an impact-generated debris
disk. Such a disk is dynamically distinguished by its substantial mass relative to the Earth and
a very centrally condensed radial profile, with a mean orbital radius near the classical Roche
limit. In the inner protolunar disk, accretion is inhibited by tidal forces. Typically, a single large
moon accretes just outside the Roche limit, at a distance of about 3.5–4.0 × the Earth’s radius.
A simple relationship between the fraction of the disk mass that is incorporated into the final
moon and the initial disk angular momentum has been determined from simulations spanning
a wide range of initial conditions, collisional parameterizations, and numerical resolutions. Pre-
dicted accretion yields range from 10% to 55%, with most of the remaining material scattered
onto the Earth. Recent N-body simulations show the formation of transient gravitational insta-
bilities in the inner disk, leading to rapid disk-spreading rates. These results may, however, be
affected by current models’ neglect of the thermal state of the disk material. Analyses of the
orbital evolution of material due to tidal interaction with the Earth suggest that remnants of the
initial accretion phase will likely be accumulated by either the largest moon or the Earth, leav-
ing a single moon in most cases.
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Modeling of the tidal evolution of multiple bodies in ter-
restrial orbit (Canup et al., 1999) suggests that the two moon
states will destabilize (through either mutual collision or
collision of one of the moons with the Earth), and that an
inner massive moon will likely sweep up smaller outer de-
bris as it tidally evolves outward.

While simulations of both lunar accretion and the long-
term evolution of bodies in Earth orbit appear to naturally
predict an end state of a single moon, forming a lunar-mass
moon remains problematic. Comparisons between predic-
tions of impact simulations and results of the lunar accre-
tion simulations are currently underway. However, to date
a single impact has yet to be identified that can simulta-
neously account for the masses of the Earth and the Moon,
as well as the current system angular momentum (Cameron
and Canup, 1998; Canup et al., 2000; see also chapter by
Cameron, 2000). The only impacts thus far simulated that
produce sufficient amounts of ejecta involve either impacts
with angular momenta of about twice that of the Earth-
Moon system, or an impact with a reduced-mass Earth that
is only about 70% accreted after the moon-forming impact
(see chapter by Cameron, 2000).

In this chapter, we review the accretion models, which
describe the evolution of a particulate protolunar disk com-
posed of a distribution of solid bodies. We note that this
likely may not correspond well to the earliest state of the
protolunar disk (a state that the impact simulations do not
yet unambiguously constrain), or to the physical state of the
disk material as it collisionally evolves. Below we first out-
line basic timescale arguments for the postimpact evolu-
tion of the disk; for additional discussion, see Thompson and
Stevenson (1988), and reviews by Stevenson (1987) and
Pritchard and Stevenson (2000).

Timescales for cooling from a lunar mass, optically thick
protolunar disk radiating as a blackbody are ~10–100 yr.
By far the fastest process in the disk is collisions between
ejected bodies, with the characteristic time between colli-
sions given by tcol ~ 1/(τΩ) ~ 4 × 103(a/3 R )3/2(1/τ) s, where
τ is optical depth and Ω ≡ (GM /a3)1/2 is the orbital fre-
quency at a semimajor axis a. For τ ~ 1 at a = 3 R, tcol is
about 1 hr. Collisions damp relative energies, causing the
disk to flatten, and exchange angular momentum, causing
the disk to spread. The timescale for disk spreading is
tspread ~ a2/ν, where ν is viscosity; tspread is much longer than
the collision time in most disks. The standard kinematic
viscosity is a function of the velocity dispersion v and tcol:
ν ~ v2tcol. For a 2 M, uniform surface density disk com-
posed of mass m particles extending to a ~ 3 R, tspread ~ 6 ×
1020/m yr, where m is in grams and we have assumed v ~
vesc, where vesc is the surface escape velocity of the disk par-
ticles. However, disk-spreading times can be much shorter
than this estimate for a massive disk subject to gravitational
instability (WC77). Instability-induced clumps are not stable
within the Roche limit, but lead to enhanced collision rates
that in turn yield a much larger effective viscosity, νeff ∝
G2Σ2/Ω3 where Σ is the disk surface density (WC77; see also
Lin and Pringle, 1987). This is the same functional form

for viscosity that was later found by KIM00 using a some-
what different physical argument (see section 3, equa-
tion (31)). N-body simulations of the protolunar disk have
confirmed the rapid timescale for disk spreading predicted
by Ward and Cameron, with tspread ~ months. However, such
rapid rates may be physically unrealistic when the thermal
and radiative properties of the disk are taken into account.
Thompson and Stevenson (1988) recognized that the rate of
spreading in the protolunar disk may be fundamentally regu-
lated by the ability of the disk to radiate the gravitational
binding energy liberated as the disk spreads. In this case,
tspread is on the order of the disk cooling time, or 10–100 yr,
vastly longer than that predicted using the viscosity derived
in WC77.

When material in the disk has cooled and solidified, mu-
tual collisions will result in fragmentation for high impact
velocities, and in accretion if relative velocities are ∼>vesc.
However, in a massive protolunar disk, the rate of collision
may be so high as to remelt or even revaporize disk mate-
rial during the accretion process (see discussion in chapter
by Pritchard and Stevenson, 2000). Once massive bodies
are present, they will experience orbital evolution due to
tidal interaction with both the disk and the Earth. Using the
current terrestrial tidal dissipation factor, the orbital evolu-
tion time for a lunar mass body with a = 3 R due to ter-
restrial tides is on the order of years to decades, longer than
nominal accretion times implied by N-body simulations.

It thus should be recognized that the protolunar disk may
evolve significantly prior to the point at which its state could
be aptly described by a particulate distribution of solid
bodies, which is the assumption inherent to all the simula-
tions described in this chapter. Indeed, the nature of the
protolunar disk viscosity and its associated spreading time
will be functions of the initial thermal state of the ejected
material, as well as the subsequent evolution of the disk’s
energy budget as it spreads and accretes. To date, models
have not included such processes, and it is thus unclear
whether current simulations offer an adequate description
of the disk viscosity and temporal evolution. This is par-
ticularly true in the inner disk, where material is most likely
to have been significantly heated. The need for further in-
vestigation of these issues has been highlighted by a new
theory for the origin of the Moon’s orbital inclination (Ward
and Canup, 2000). This theory relies on a resonant interac-
tion between the newly formed Moon and an inner remnant
disk, the effectiveness of which is dependent upon the vis-
cosity, lifetime, and mass of the inner disk.

However, the main finding of the accretion simulations
to date — a relationship between the mass of the moon and
the initial angular momentum of the disk — should be rela-
tively independent of the exact physical nature of the disk
material. Assuming that the disk angular momentum is pro-
vided by the original impact event, the final size of the moon
that can accrete just outside the Roche limit is constrained
by a simple conservation of angular momentum argument,
regardless of the mode of angular momentum transport in
the disk.
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In this chapter, we describe the general results of the ac-
cretion simulations, which are relatively insensitive to choice
of initial disk conditions over the parameter space explored
to date. In section 2, we outline a parameterization for model-
ing the tidal inhibition of accretion near the Roche limit.
Section 3 describes the results of N-body simulations of the
protolunar disk, and section 4 discusses the long-term evo-
lution and stability of material in terrestrial orbit. Section 5
offers a summary and discusses areas for future research.

2. MODELING ACCRETION NEAR
THE ROCHE LIMIT

Traditionally, simulations of accretion in a circumsolar
protoplanetary disk (e.g., Greenberg et al., 1978; Nakagawa
et al., 1983; Spaute et al., 1991; Wetherill and Stewart, 1993;
Weidenschilling et al., 1997) have utilized two-body approxi-
mations to describe interactions between orbiting bodies.
For example, a standard accretion criterion is that the re-
bound velocity following a collision must be less than the
two-body escape velocity of the colliding pair. Such ap-
proaches are valid if the physical size of an orbiting object
is much smaller than its Hill sphere, as is the case for or-
bits well outside the classical Roche limit. For an impact-
generated disk, 〈a〉 ~ aR, and a three-body treatment is re-
quired to account for tidal inhibition of accretion near and
within the Roche limit. In this section, we review develop-
ments in tidal accretion models, focusing on the model uti-
lized in lunar accretion simulations.

2.1. The Hill Three-Body Formalism

The Hill approximation describes the motion of two
bodies orbiting a much more massive central body using a
rotating coordinate system. The Hill coordinate system is
defined so that the x axis points radially outward, the y axis
is tangent to a circular orbit, and the z axis is normal to the
orbital plane. The angular velocity of the coordinate sys-
tem is just the Keplerian orbital frequency, Ω = (GMc/a0

3)1/2,
where a0 is the reference orbital radius and Mc is the mass
of the central body. For a complete derivation, see Naka-
zawa and Ida (1988).

Hill’s equations are often written in nondimensionalized
form, with time scaled by Ω–1 and length scaled by the
product (ha0), where h is the reduced Hill radius. For a pair
of orbiting bodies with masses m1 and m2, h ≡ [(m1 + m2)/
(3 Mc)]1/3. The linearized equations of relative motion in
nondimensionalized Hill units are
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where x, y, and z are the relative coordinates in the rotat-

ing frame and r = (x2 + y2 + z2)1/2. The (2y) and (−2x) terms
represent Coriolis forces, and those proportional to 1/r3 are
the mutual gravity terms. The tidal terms are (3x) and (–z):
The tidal acceleration is positive in the radial direction (act-
ing to increase the separation of the orbiting bodies), nega-
tive in the vertical direction (acting to decrease the relative
separation of the orbiting bodies), and has no component
in the azimuthal direction.

A constant of the motion described by equation (1) is the
Jacobi energy
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where U(x,y,z) is the Hill potential
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The first two terms of U are the tidal potential, and the third
is the mutual gravity between the orbiting objects. The con-
stant 9/2 has been added so that U vanishes at (x,y,z) =
(±1,0,0), i.e., the L1 and L2 Lagrangian points. Figure 1
shows the Hill potential in the z = 0 plane. The U = 0 sur-
face defines the Hill “sphere,” which is actually lemon-
shaped with a half-width (in Hill units) of unity in the radial
direction, 2/3 in the azimuthal direction, and 0.64 in the
vertical direction. The Hill sphere is roughly the region of
space within which the gravity of an orbiting object domi-
nates the motion of nearby particles.

For orbits near the Roche limit, the physical size of an
orbiting body becomes comparable to the size of its Hill
sphere. The Hill radius of an isolated orbiting body of mass
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Fig. 1. The Hill potential for the z = 0 plane; units are in Hill
units (time scaled by Ω–1 and length scaled by rH = ha0).
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m is just rH = [m/(3Mc)]1/3a. The ratio between the physi-
cal radius of a body and its Hill radius is

r
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c= 31/3

–1/3ρ
ρ

(4)

where Rc and ρc are the radius and density of the central
body, and ρ is the density of the orbiting body. This ratio
can also be expressed in terms of the classical Roche limit
for a fluid, strengthless body

r

r

a

aH

R0 6. (5)

where

a RR
c

c≡
−1/3

2 456.
ρ
ρ

(6)

For a >> aR (and so r << rH), encounters between objects are
well described by two-body approximations that ignore the
gravity of the central body. However, if a ~ aR (or if rela-
tive velocities are comparable or less than the quantity ha0Ω,
known as the Hill velocity), a three-body approach is re-
quired to describe interactions and collisional outcomes.

2.2. Tidal Accretion Criteria

Early models for accretion near the Roche limit were
developed to describe collisions in planetary rings. Weiden-
schilling et al. (1984) incorporated tidal effects into their
ring evolution model by allowing for disruption of bodies
when a size-dependent tidal stress exceeded an assumed
internal strength. However, it was later argued (Longaretti,
1989) that gravity must be the dominant mechanism for
accretion of bodies larger than a few centimeters. Longaretti
(1989) derived a tidal accretion condition by determining
the equilibrium between the tidal force and the mutual gravi-
tational force between a pair of orbiting particles aligned
radially with respect to the central planet. This defined a
critical mass ratio for a pair of colliding bodies below which
gravitational accretion could occur, which was equivalent
to the requirement that the sum of the radii of the colliding
bodies must be less than (ha0) for accretion. Henceforth we
will refer to the quantity (ha0) as the mutual Hill radius.

A somewhat different set of conditions results if a tidal
model is developed using an energy rather than a force
approach. Ohtsuki (1993) observed that since the Hill po-
tential U = 0 surface is closed, two objects cannot escape
their mutual Hill sphere if their postcollision relative energy,
EJ', is negative. From this EJ' < 0 condition, Ohtsuki derived
a maximum coefficient of restitution that would allow for
accretion assuming r << rH and neglecting the tidal terms in
equation (3). For the case of r ~ rH, Ohtsuki (1993) per-
formed numerical integrations of collisions, concluding that
the probability for accretion dropped rapidly for r ∼> 0.7 rH.
Canup and Esposito (1995, hereafter CE95) expanded on

Ohtsuki’s approach, including the tidal terms in U and de-
riving capture criteria for the r ~ rH and a ~ aR case. These
criteria include (1) a critical mass ratio for accretion [of the
same form as that found by Longaretti (1989) but some-
what more restrictive] and (2) a critical coefficient of resti-
tution. These constraints define a “Roche zone”: the region
surrounding the classical Roche limit where tidally modi-
fied accretion occurs (CE95). Below we review the deriva-
tion of these basic tidal accretion criteria, which can be
easily incorporated into statistical or direct integration ac-
cretion simulations.

As two bodies collide, EJ is just
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where vimp is the scaled impact velocity, and xp, yp, and zp
are the coordinates of the impact point, such that xp
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where µ is the mass ratio of the colliding objects, with 0 <
µ ≤ 1. The postcollision energy is (Ohtsuki, 1993)
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Here ε is an effective coefficient of restitution given by
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where the vn and vt are the normal and tangential compo-
nents of the relative impact velocity and εn and εt are the
normal and tangential coefficients of restitution. When the
velocity and orientation of an impact are both known (e.g.,
in an N-body simulation), the EJ' < 0 test for accretion for a
given collision can utilize equation (10) directly. Below we
derive accretion criteria averaged over all impact orienta-
tions.

If two bodies collide with random orientation, averag-
ing equation (10) over all impact orientations gives the angle-
averaged rebound energy (CE95)
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The specific choice of impact orientation affects the coeffi-
cient of the rp2 term; here we have assumed random impact



Kokubo et al.: Lunar Accretion from Impact-generated Disk 149

orientation. The rp2 coefficient is 3/2 in the case of impacts
occurring in the radial direction, –1/2 for impacts in the
vertical direction, and 0 for impacts oriented in an azimuthal
direction. The above equation can also be written as

E v vJ imp esc B,= −( )1

2
2 2

3
2ε (13)

where vesc,3B is an angle-averaged three-body escape veloc-
ity (CE95)

v r resc B p p, / /3
26 2 3 9≡ + − (14)

The scaled two-body escape velocity is just 6/rp.
A necessary condition for EJ' <0 is that the term v2

esc,3B
is positive, because the term ε2v2

imp is always positive. This
condition requires that

rp 0 691.∼> (15)

Note that v2esc,3B
 is also positive for rp > 3.3, but in this case

the bodies are well outside their Hill sphere and cannot re-
main gravitationally bound. The physical meaning of equa-
tion (15) is that (r1 + r2) must be less than the angle-averaged
Hill radius. For EJ' to be negative, v2esc,3B

 must also be larger
than ε2v2

imp. The latter condition yields a critical coefficient
of restitution
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Thus when the physical size of colliding bodies exceeds
about 70% of their mutual Hill radius they will not on av-
erage remain gravitationally bound, even if collisions are
completely inelastic. This differs from the two-body ap-
proximation, in which completely inelastic collisions always
result in accretion. Equation (15) is also a more stringent
requirement than that obtained by Longaretti (1989) using
a force approach to model escape in the radial direction,
which yields an rp < 1 criterion. This is because escape from
the Hill sphere is also possible azimuthally and vertically,
and the Hill “sphere” is actually narrower in these direc-
tions.

Equations (9) and (15) define a critical mass ratio for
accretion for a completely inelastic (ε = 0) collision as a
function of orbital location and particle density (CE95)
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where µcr is the maximum mass ratio that two bodies can
have in order to remain gravitationally bound after a com-
pletely inelastic collision. Figure 2 is a plot of the critical
mass ratio for accretion as a function of orbital radius, with
the classical Roche limit shown for comparison. The criti-
cal accretion curve in Fig. 2 was derived assuming random
impact orientation; a choice of a specific impact orientation
(e.g., a radial impact) shifts the curves along the x-axis but
does not change their form (see, e.g., Fig. 4). Note that the

accretion of like-sized (µ = 1) bodies is tidally inhibited
within a region that extends beyond the classical Roche
limit, while pairs with low mass ratios can accrete interior
to aR.

2.3. Character of Tidal Accretion

The three-body accretion criteria discussed above define
three basic regimes of accretional growth surrounding the
Roche radius. For orbits interior to about 0.85 aR, bodies
overflow the mean width of their Hill sphere and tidal ef-
fects on average preclude accretion. Accretion in the range
of 0.85 aR ∼> a ∼> 1.4 aR (defined by CE95 to be the “Roche
zone”) is mass ratio dependent: collisions between bodies
with a mass ratio less than µcr may result in accretion if
rebound energies are low enough. Bodies with mass ratios
larger than µcr cannot on average remain gravitationally
bound, even for completely inelastic collisions. For orbits
exterior to about 1.4 aR, accretion is possible between ob-
jects of all sizes.

The parameterizations of tidal effects discussed here are
simplistic, and represent only a first-order approach to the
problem. Potentially important physical effects have yet to
be included, or really even investigated. For example, im-
plicit in the derivation has been the assumption that collid-
ing bodies are spherical and will bounce in a manner similar
to billiard balls, rebounding in an intact state with a given
coefficient of restitution. The outcome of a collision near
the Roche limit might be quite different if the collision energy
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Fig. 2. The angle-averaged critical mass ratio for accretion as a
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inelastic collisions (ε = 0). Here aR is the classical Roche limit
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etary density (see text for details). Accretion is precluded by tidal
forces on average for impacts occurring with random impact ori-
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were high enough to fragment a significant amount of the
mass of one or both of the colliding bodies. In this case, the
pulverized fragments might more easily be able to avoid
physically protruding from the Hill sphere. Another assump-
tion involves the use of the standard Hill approximation to
describe the local potential of two bodies in contact that are
similar in size with rp ~ 1. In this case, the distribution of
mass is far from spherically symmetric, and would likely
cause a distortion of the local potential and the shape of the
Hill “sphere” from the standard Hill approximation. Orbit-
ing bodies would also likely be rotating before and after
collisions, the effects of which were not included in Ohtsuki
(1993) or CE95.

Finally, the criteria described here have been derived us-
ing a three-body approach, and any local clumping of ma-
terial in the region of a collision could collectively influence
collisional outcomes in a manner different than that pre-
dicted here. For example, local simulations of collisional
evolution within Saturn’s rings suggest that the formation
of gravitational wakes fosters the buildup of temporary ag-
gregates (Salo, 1992; see also discussion in CE95); such
clumping is also observed in the lunar accretion simulations.
However, direct N-body integrations that treat all collisions
as inelastic rebounds and explicitly model mutual interac-
tions show the growth of aggregates in a similar manner as
that predicted by the tidal accretion criteria reviewed above
(see section 3).

The tidal accretion criteria do a credible job of account-
ing for the gross characteristics of the planetary ring sys-
tems around the outer planets (e.g., Longaretti, 1989; CE95;
Canup and Esposito, 1997). The location of the Roche zone,
the variation of the inhibition of accretion with orbital ra-
dius, and the mass-ratio dependence of tidal accretion ap-
pear to coincide qualitatively well with a fundamental ob-
served transition in all the outer satellite systems — from
inner rings, to coexisting rings and moons, to outer isolated
moons. This basic agreement is important, as the current
ring and inner satellite systems are a direct observable rel-
evant to a dynamical state through which the protolunar disk
may have evolved.

3. N-BODY SIMULATION OF
LUNAR ACCRETION

In this section, we focus on lunar accretion as modeled
using direct N-body orbital integrations. In the evolution of
a protolunar disk, global effects such as radial migration of
lunar material, interaction of formed moons with the disk,
and collective effects such as the formation of particle ag-
gregates are potentially important. The merit of N-body sim-
ulation is that all gravitational interactions are explicitly
accounted for, while the main disadvantage of this technique
is its high computational cost. ICS97 were the first to use
N-body simulation to investigate the evolution of a particu-
late protolunar disk and lunar formation. Inspired by the
work of ICS97, KIM00 performed higher-resolution N-body
simulations of a protolunar disk and investigated the evo-
lution of the spatial structure of the disk in detail. The main

result of the simulations by both ICS97 and KIM00 is that,
in most cases, a single large moon is formed just outside
the Roche limit on a timescale of a month, with a nearly
circular orbit close to the equatorial plane of the initial disk.
The mass of the moon is linearly dependent on the initial
disk angular momentum.

In this section, we focus on three points: (1) why a single
moon is the typical outcome of the disk evolution, (2) what
determines the timescale of lunar accretion from a particu-
late disk, and (3) the relation between the mass of the
accreted moon and the initial disk condition.

3.1. Method of Calculation

3.1.1. Orbital integration. In an N-body simulation, the
orbits of particles are calculated by numerically integrating
the equation of motion
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dt
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where m, x, and v are the mass, position, and velocity of
disk particles respectively, and G is the gravitational con-
stant. The first term of the righthand side of equation (18)
represents the Earth’s gravity, and the second is the mutual
gravitational interaction of disk particles. ICS97 and KIM00
did not include the force due to tidal bulges raised on the
Earth by orbiting bodies, since the timescale of orbital evo-
lution due to terrestrial tides is much longer than the ac-
cretional timescale (CE96). The J2 component of Earth’s
gravity ( 10–3 at present; 10–2 at the time of formation)
was also not included. For numerical integration, both ICS97
and KIM00 used the predictor-corrector type Hermite scheme
(Makino and Aarseth, 1992; Kokubo et al., 1998).

The most expensive part of N-body simulation is the
calculation of the mutual gravitational force, whose cost in-
creases in proportion to the square of the number of par-
ticles. However, the recent development of software and
hardware for N-body simulation has made it possible to con-
sider more than 104 particles in a protolunar disk simula-
tion, compared to the 103 particles utilized in ICS97. In the
KIM00 simulations, mutual gravitational forces were calcu-
lated by directly summing up interactions of all pairs of par-
ticles on the special-purpose computer, HARP-3/GRAPE-4
(Makino et al., 1993, 1997, Makino and Taiji, 1998).

3.1.2. Collision and accretion.Collisions between par-
ticles play an important role in the evolution of a protolunar
disk. In an N-body simulation, a collision occurs when the
distance between two particles equals the sum of their ra-
dii. It is assumed that two colliding particles rebound with
a relative rebound velocity v', which is determined by the
relative impact velocity v and the coefficients of restitution

v v
v v

n n n

t t t

= −
=

ε
ε (19)

The velocity of each particle after the collision is then cal-
culated based on conservation of momentum. KIM00 and
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ICS97 performed simulations with two values for the nor-
mal coefficient of restitution, εn = 0.1 and 0.01; the tangen-
tial component was fixed at εt = 1 for simplicity. For these
values, the effective coefficient of restitution given by equa-
tion (11) is ε  0.7.

In N-body accretion simulations, the initial particles in
the disk are assumed to have infinite strength, so that they
remain intact even at arbitrarily close distances to the Earth.
This prevents the total number of bodies in a simulation from
rapidly growing to a computationally unmanigable quantity.
However, this assumption means that the simulated size dis-
tribution of material interior to the Roche limit likely con-
tains bodies that are larger than those that in reality could
have accreted there; for example, in the high-resolution sim-
ulations of KIM00, the smallest initial particles have m ~
10–5 M , or a diameter of about 60 km.

Given an initial distribution of disk particles, conditions
for when collisions will result in accretion must be then
specified. The necessary and sufficient conditions for gravi-
tational binding between two orbiting particles are that
(1) the Jacobi energy of the two bodies (equation (10)) af-
ter the collision is negative, and (2) the centers of mass of
both colliding bodies are within their mutual Hill sphere.
Because the Hill potential is nonaxisymmetric, both condi-
tions depend on the angle of impact, as discussed in sec-
tion 2. The ICS97 simulations used the angle-averaged CE95
accretion criteria, assuming that any collision with EJ' < 0
and (r1 + r2) < 0.7 rH resulted in a merger. The merged spher-
ical body was assigned a total mass equal to that of the
colliding bodies, and its position and velocity were set equal
to those of the center of mass of the collision. In a merging
event, some fraction of the orbital angular momentum of
two colliding bodies would in reality be transferred into the
spin of the merged body. However, the spin angular mo-
mentum obtained by many merging events is generally much
smaller than the orbital angular momentum, and so the to-
tal orbital angular momentum of a system during a simula-
tion is very nearly conserved. Merged bodies were assumed
to have infinite strength, so that a merged body that accreted
outside the Roche limit remained intact even if it later
strayed within aR.

The KIM00 simulations expanded on ICS97 by consid-
ering three different formalisms for collisional outcomes.
The first, called the “partial accretion model,” was identi-
cal to that utilized in ICS97. In the second model, the “to-
tal accretion model,” the condition for merger was relaxed
so that accretion was assumed for collisions after which EJ' <
0 and (r1 + r2) < rH. In a final set of simulations, KIM00 did
not allow for any mergers, and instead simply allowed par-
ticles to bounce inelastically. In this “rubble pile model,”
gravitationally bound aggregates of particles form outside
the Roche limit, and are tidally disrupted when they stray
too close to Earth. In both the rubble pile and sometimes
in the partial accretion model, gravitationally bound particles
can remain in contact with one another even though they
are not formally merged.

While the total and partial accretion models both assume
that mergers create bodies of infinite strength, the rubble

pile model assumes that merged aggregates have no strength
and are held together only by their self-gravity. In the case
of a strengthless, deformable fluid body, the classical Roche
limit defines the minimum distance for an object to remain
gravitationally bound, which from equation (5) implies r ∼>
0.6 rH for stability. Physical reality would fall somewhere
in between the infinite strength and strengthless approxima-
tions.

KIM00 found that the results of the total and partial ac-
cretion models and the rubble pile model are quantitatively
similar over relatively short dynamical timescales. Over
longer dynamical timescales, the rubble pile model differs
slightly because, in this case, the moon loses some mass
during collisions with other aggregates and through tidal
stripping. The results of both the total and partial accretion
models are essentially the same over long dynamical time-
scales.

3.1.3. Initial conditions. ICS97 and KIM00 started their
simulations of lunar accretion assuming a solid particle disk.
As the initial properties of an impact-generated disk are
uncertain, and because the disk may significantly evolve be-
fore it cools and may be able to be treated as a particulate
distribution, both ICS97 and KIM00 modeled the protolunar
disk using a wide array of initial conditions. The initial mass
distribution of disk particles was modeled by a power-law
mass distribution

n(m)dm ∝ m–αdm (20)

where n(m) is the number of particles of mass m. The den-
sity of disk particles is ρ = 3.3 g cm–3 (the bulk lunar den-
sity) and the density of the Earth is ρ  = 5.5 g cm–3. Disk
particles are assumed to be spheres. The initial disk is axi-
symmetric, with a power-law surface density distribution
given by

Σ(a)da ∝ a–βda (21)

where a is the distance from the Earth, with inner and outer
cutoffs, ain and aout. The assumption of disk axisymmetry
should be valid because a nonaxisymmetric disk becomes
axisymmetric due to Keplerian shear on a timescale of sev-
eral Kepler times (approximately days). The initial eccen-
tricities and inclinations of particles are assumed to be
Rayleigh distributed. The ratio of the RMS eccentricity to
the RMS inclination was fixed as 〈e2〉1/2/〈i2〉1/2 = 2. In gen-
eral, the initial distributions of eccentricities and inclinations
do not affect the disk evolution since they relax with a
timescale on the order of the Kepler period due to collisional
damping.

KIM00 studied the evolution of two initial disk masses,
2 M  and 4 M. They also varied the power index of the
surface density distribution (β = 1,3,5) and the outer cutoff
of the disk (aout = 0.5,1,1.5,2 aR), which is equivalent to
changing the initial specific angular momentum of the disk,
jdisk. The jdisk values were varied over the range

0 62 1 0. .GM a j GM aR disk R≤ ≤

The effects of the power index of the mass distribution and
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the initial velocity dispersion on the result were also tested.
The power-law exponent of the mass distribution was cho-
sen to be α = 0.5,1.5,2.5,∞, with a dynamic range in mass
of mmax/mmin = 1000 for the α ≠ ∞ cases (α = ∞ corresponds
to an equal-mass case).

3.2. Evolution of a Protolunar Disk

KIM00 performed 60 simulations with the total and par-
tial accretion models, and 104 initial particles. They followed
the evolution of the disk for 1000 TK, where TK is the Kepler
period at the distance of the Roche limit and  TK  7 hr. The
disk evolution is qualitatively similar for all the simulations
in KIM00 and ICS97, although the initial disk conditions,
the accretion model utilized, and the number of initial disk
particles were varied.

In Figs. 3–5, we show an example of the evolution of a
104-particle disk as simulated by KIM00. The initial disk
has a mass Mdisk = 4 M  with α = 1.5, β = 3, ain = R , aout =
aR, and 〈e2〉1/2 = 0.3. The coefficients of restitution were as-
sumed to be εn = 0.1 and εt = 1 and the total accretion model
was adopted.

Figure 3 shows snapshots of the protolunar disk in the
R–z plane for t = 0, 10, 20, 100, 1000 TK. The protolunar
disk first flattens through collisional damping and then ex-
pands radially. A single large moon forms around R  1.4 aR
on a nearly noninclined circular orbit on a timescale of
~100 TK. These are universal characteristics of the accreted
moon in all the simulations by KIM00 and most of the
ICS97 simulations, and appear to be nearly independent of
initial disk conditions.

The orbital radius of the location of each merging colli-
sion and the mass ratio of the accreted particles are plotted
in Fig. 4. The angle-averaged CE95 critical mass-ratio is
shown as well as the total accretion model condition, rp < rH.
As the total accretion model was adopted here, accretion
was possible to the right of the curve rp < rH. In t = 0–10 TK,
disk particles spread outward and start to accrete with one
another if the accretion conditions are satisfied. In the total
accretion model, accretion becomes possible for m2/m1 =
10–3 beyond a  0.65 aR. The minimum mass ratio of 10–3

at this stage reflects the initial mass dynamic range. The
accretion location spreads outward as the disk expands, and
accretion between particles with small mass difference oc-
curs in t = 10–20 TK. The rapid formation of the moon oc-
curs in t = 20–100 TK. In this stage, the formation of rela-
tively large moonlets and collisions among them make a
single large moon. The accretion between particles that dif-
fer greatly in mass around R = 1.3 aR indicates the accre-
tion of disk particles by the growing moon. The moon
gradually migrates outward due to interaction with the disk
while still accreting some material in t = 100–1000 TK, al-
though the growth rate is low.

The mass of the largest moon, M, and the mass fallen to
the Earth, Mfall, are plotted vs. time in Fig. 5. The mass of
material that escapes from the gravitational field of the Earth
is usually smaller than 5% of the initial mass of the disk.

The mass of the moon at t = 1000 TK is 0.85 M , while
3.1 M  of the initial disk mass has fallen to the Earth. The
fraction of the disk mass incorporated into the moon varies
with the initial disk conditions.

The evolution of the disk is divided into two stages,
namely, the rapid growth and slow growth stages as seen
in Figs. 3 and 5. The duration of the rapid growth stage is
~100 TK, or about 1 month. In this stage, the redistribution
of disk mass through angular momentum transfer supplies
material for accretion outside the Roche limit: Most of the
disk mass falls to the Earth while some of the mass is trans-
ported outward (see Fig. 5). The formation of the moon is
almost completed in this stage. The slow growth stage af-
ter ~100 TK is the “cleaning up stage,” where the moon
sweeps up and scatters away the residual disk mass.

3.2.1. Formation of a single moon.In order to see why
a single large moon is a typical outcome of the disk evolu-
tion, we examine the rapid growth stage in detail. The evo-
lution of the spatial structure of the disk in the rapid growth
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0, 10, 20, 100, and 1000 TK. The semicircle centered at the coor-
dinate origin represents the Earth. Disk particles are shown as
circles whose size is proportional to the physical size of disk par-
ticles.
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stage is most easily seen by the rubble pile model, since in
this model gravitationally bound particles are not merged
but form particle aggregates. Snapshots of the disk in the
x–y plane are shown for t = 0, 1, 5, 10, 20, and 40 TK in
Fig. 6. The initial condition of the disk here is the same as
that shown above except here an equal-mass initial distri-
bution was considered. Figure 7 shows snapshots of the
radial profile of the surface density. The surface density
drops to zero at the surface of the Earth (R = 0.34 aR). At
t = 40 TK of Fig. 6, a large bound aggregate with a mass of
about one-half the present Moon is formed at R  1.3 aR,
which is consistent with the result of the total and partial
accretion models.

Before examining the disk evolution in further detail, we
briefly discuss the stability of a differentially rotating disk.
Disk stability has been studied extensively in the context
of galactic and circumstellar disks (see, e.g., Binney and Tre-
maine, 1987). In a disk, self-gravity tends to produce den-
sity contrasts, while the random motion of constituent par-
ticles and the tidal force (shear) smooth it. It is convenient
to introduce Toomre’s Q parameter (Toomre, 1964)

Q
v

GΣ
R≡ Ω

π
(22)

where vR is the radial velocity dispersion of disk particles
and Ω is the angular velocity of the disk. When Q > 1, that
is, when the effect of the tidal force or the random motion
overwhelms that of the self-gravity of the disk, the disk is
gravitationally stable and density contrasts do not grow in
the disk. In fact, a particulate protolunar disk is marginally
stable, but instability still plays an important role in the disk
evolution. In terms of aR, Q is given by

Q
a

a
disk

R

~ .0 1
1 3ρ

ρ

− −

(23)

where ρdisk is the spatial density of disk material and ρ is
the internal density of the disk particles (Ida et al., 2000).

The evolution of an initially compact disk in the rapid
growth stage is described below:

1. Contraction of the disk. The initial disk is dynami-
cally “hot” (high relative velocities) and Toomre’s Q value
is much larger than unity (t = 0 TK of Fig. 6), so that the
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disk is gravitationally stable. First the disk shrinks radially
and vertically because the velocity dispersion decreases
through collisional damping. The timescale of this contrac-
tion is of the order of TK since the initial optical depth of
the particulate disk in the simulation is of order of unity and
the coefficient of restitution for particles is less than unity.

2. Formation of clumps. As the velocity dispersion de-
creases, Q decreases. At this time particle clumps grow near
a  0.5 aR where Q has its minimum value Q ~ 1 (t = 1 TK).

3. Formation of spiral arms. The clumps are soon de-
stroyed by the tidal force because they are within the Roche
limit. They become elongated due to Keplerian shear, which
results in the formation of spiral arm-like structures (t =
5 TK). The radial wavelength of the spirals, as well as the
size of the clumps, is roughly consistent with the critical
wavelength with Q = 1 expected from linear stability analy-
sis (e.g., Toomre, 1964)

λ λ π π~ ~c
diskG

a
M

M
≡ 2

2
2

2

Σ
Ω

(24)

For a = 0.5 aR and Σ = 0.03 M aR
–2, λc ~ 0.1 aR, which is

consistent with the results in Fig. 6. Since the pitch angle
of the spiral arms is moderate, the number of spiral arms is
estimated by

n
a M

Ms
c disk

2π
λ

~ (25)

For Mdisk = 4 M , ns ~ 20, which is consistent with results
of N-body simulations. The spiral arms are transient mate-
rial waves, not pattern waves, and are not gravitationally

bound inside the Roche limit. The spiral arms are sheared
out as they wind up, and then the cycle is repeated, as gravi-
tational instability leads to the formation of clumps that are
elongated to form spiral arms again.

4. Mass transfer by spiral arms. Particles are trans-
ferred outside the Roche limit through the gravitational
torque exerted by the spiral arms, in compensation for the
inward evolution of many particles to Earth. The surface
density inside the Roche limit decreases with time due to
mass transfer to Earth and beyond the Roche limit. On the
other hand, since the simulated disk was initially entirely
within the Roche limit, the surface density outside aR in-
creases with time as material spreads outward. While the
mass (and angular momentum) is effectively transferred by
spiral waves, Q is kept around 2 (e.g., Salo, 1995; Daisaka
and Ida, 1999).

5. Collapse of aggregates. When a tip of a spiral arm
extends beyond the Roche limit, it collapses into a small
aggregate (t = 10 TK). Outside the Roche limit, particles in
contact in the aggregate are gravitationally bound. The mass
of the aggregate is approximately given by

m
M

M
Mc disk

diskπ
λ

πΣ
2

2
2

2

~ (26)

The formation of aggregates outside the Roche limit in the
rubble pile model corresponds to the formation of moon-
lets in the accretion models.

6. Formation of a lunar seed. By sweeping up the small
aggregates, a large aggregate quickly grows on a timescale
of 10 TK (t = 20 TK). A single large aggregate (the lunar
seed) is formed at a  1.1 aR, with a nearly noninclined and
circular orbit.

7. Growth of the lunar seed. The lunar seed stays just
outside the Roche limit and continues to sweep up particles
spreading beyond the Roche limit. As the lunar seed grows,
it moves gradually outward due to interaction with the in-
ner disk. The peak of the surface density at t = 40 TK (R 
1.3 aR) corresponds to the lunar seed.

As a massive and compact particulate disk evolves in the
manner described above, a single large moon forms inevi-
tably. The relations (24), (25), and (26) also hold in simu-
lations with somewhat different values of Mdisk. Note that
if the initial disk is radially extended past the Roche limit,
accretion is immediately possible in the outer disk, which
may result in a temporary multiple moon system (Canup et
al., 1999).

3.2.2. Timescale of lunar accretion. KIM00 showed that
the timescale of the rapid growth stage is of the order of
100 TK (approximately 1 month), relatively independent of
the initial conditions they simulated. Assuming that the ini-
tial disk is contained primarily within the Roche limit, the
moon forms from material spreading beyond aR, so that the
predicted timescale of lunar formation is almost equivalent
to the timescale of the mass and angular momentum trans-
fer due to the gravitational torque by the spiral arms. The
angular momentum flux through a right circular cylinder
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centered on the disk axis is given by
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where Φ is the disk potential (Lynden-Bell and Kalnajs, 1972).
For a disk with a spiral pattern whose potential can be repre-
sented by

Φ Σs s
i n f RR

G

k
R e s( , ) ( ) [ ( )]θ π θ= − +2

(28)

where k is a radial wavenumber of the spiral pattern in the
tight-winding approximation, Σs(R) gives the amplitude of
the spiral pattern, and f(R) is the shape function of the spi-
ral pattern (see, e.g., Binney and Tremaine, 1987), the an-
gular momentum flux is given by (Lynden-Bell and Kalnajs,
1972)
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n GR
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Substituting the critical wavenumber kc = 2π/λc = Ω2/(πGΣ)
for k and Σ for Σs and using ns = kR tan i, we obtain

F
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g = π3 2 2 3

2

Σ
Ω

tan
(30)

where i is the pitch angle of the spiral arms. The effective
viscosity for the angular momentum flux due to the gravi-
tational torque exerted by the spiral arms, defined as νg =
Fg/(3πR2ΣΩ) (Lynden-Bell and Pringle, 1974), is thus

ν i G
g = π2 2 2

33
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(31)

Using this effective viscosity, the timescale of the angular
momentum transfer by the spiral arms is estimated as
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where ∆R is the radial shift of material due to angular mo-
mentum transfer and we have used tan i  1. This timescale
agrees well with the results of the N-body simulations by
KIM00 and ICS97. The functional form of Tg shows that
the timescale of angular momentum transfer, in other words,
the timescale of lunar accretion, depends on not the indi-
vidual mass of disk particles but rather on the surface den-
sity of the disk. WC77 obtained almost the same viscosity
and timescale by considering the energy dissipation in the
clumps formed by gravitational instability.

The spiral structure is not always clear in the disk since
it is often destroyed by gravitational scattering by large
moonlets inside the Roche limit. However, the mass trans-

fer rate hardly changes. This is because for the mass trans-
fer, the important point is not an exact spiral structure but a
nonaxisymmetric structure. Detailed investigation of the
angular momentum transfer in a particulate protolunar disk
(T. Takeda, personal communication) shows that the gravi-
tational torque exerted by the spiral arms is the dominant
driver for angular momentum transfer near the Roche limit
as long as the initial number of disk particles is larger than
a few thousand for the disks modeled here.

For a compact disk (i.e., one initially within the Roche
limit), the results of the rubble pile model show that the
lunar seed is formed not by gradual pairwise collision of
disk particles but collective particle processes: formation of
clumps by gravitational instability, angular momentum trans-
fer due to the gravitational torque due to the spiral arm-like
structures, and collapse and collision of particle aggregates.
The size of the clumps and the spiral arms are in this case
determined by the critical wavelength λc of the disk, which
is a function of the surface density. Mass transfer is driven
by the gravitational torque by the spiral arms, whose time-
scale depends on the surface density. Overall, the N-body
simulations show that it is the surface density of the disk,
rather than the properties of the individual particles, that
governs the evolution of the disk. However, these interpre-
tations are dependent on the assumption that the protolunar
disk can be adequately modeled with 103–104 particles and
that the thermal evolution of the disk material can be ne-
glected.

3.2.3. Dynamical characteristics of the moon.In this
section, we consider the relationship between the dynami-
cal characteristics of the accreted moon and the initial
protolunar disk that was investigated by both ICS97 and
KIM00. However, the results that a single large moon is
formed at R  1.3 aR and that a linear relationship exists
between the mass of the moon and the initial disk angular
momentum are essentially the same in all the simulations.

The orbital elements of the moon for all of the KIM00
simulations are shown in Fig. 8. The semimajor axis of the
moon in all cases is between aR and 1.7 aR, determined
mainly by the formation location of the lunar seed and the
subsequent interaction with the disk. The lunar seed forms
just outside the Roche limit and it is pushed outward from
its birthplace somewhat by recoil from the inner disk (shep-
herding). The eccentricity and inclination of the moon are
small due to dynamical friction and collisional damping; in
most cases, they are <0.1. These values are almost indepen-
dent of the detailed initial conditions of the disk, and are
similar to the results in ICS97. The resultant semimajor axis
of the moon is small compared with the present lunar semi-
major axis. On a longer timescale, the moon migrates out-
ward by the tidal interaction with the Earth, presumably
sweeping up outer residual mass (see section 4). Material
inside the co-rotation radius (2.3 R  for an initial 5-hr ter-
restrial day) will tidally evolve inward and fall to the Earth.

In the majority of cases, the largest moon that accretes
is much more massive than any other remaining body. How-
ever, in about one-third of the ICS97 simulations a “two-
moon” system was formed, defined to be one in which the
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mass of the second largest body exceeded 20% of the mass
of the largest moon. In the ICS97 two-moon cases, many
of the second largest moonlets had orbital radii within the
Roche limit, as they had been scattered inward subsequent
to their formation. When estimating the number of two-
moon systems formed from their simulations, KIM00 ig-
nored any moonlets inside aR, assuming that in reality such
bodies would be tidally disrupted. Given this assumption,
KIM00 found that only about 10% of their simulations
yielded two-moon systems, and that in most of these cases
the second largest moon was on a horseshoe orbit (i.e., in a
1:1 resonance) with the largest moon. A horseshoe moon-
let is the survivor of the rapid moon formation stage when
moonlets are formed and collide with one another. As col-
lisions in this stage are stochastic, a moonlet can sometimes
survive by being on a horseshoe orbit with the most mas-
sive moonlet.

In Fig. 9, the mass of the accreted moon, M, scaled by
the initial disk mass is plotted vs. the initial specific angu-
lar momentum of the disk, jdisk, for all the KIM00 simula-
tions. For cases in which the moon had a companion on a
horseshoe orbit, the sum of the moon and the horseshoe
companion is plotted.

The results of KIM00 and ICS97 (their Fig. 5) show that
M/Mdisk increases linearly with jdisk. This is because in a
small jdisk disk, (i.e., in a more compact disk), a greater
amount of mass must fall to the Earth in order for some mass
to spread beyond the Roche limit, yielding a smaller final
moon. The fraction of material escaping from the Earth also
increases with jdisk, although this fraction is usually less than
5% of the disk mass. The overall yield of incorporation of
disk material into a moon(s) ranges from 10% to 55%.

ICS97 explained the relationship between the moon mass
M and the specific angular momentum of the protolunar
disk, jdisk, by using a conservation of mass and angular mo-
mentum argument. From conservation of mass, we have

Mdisk = M + Mfall + Mesc (33)

where Mesc is the total mass of material that escapes. Con-
servation of angular momentum gives

Mdiskjdisk = Mj + Mfall j fall + Mescjesc (34)

where j, jfall, and jesc are the mean specific angular momenta
of the final moon, the mass that impacts the Earth, and the
escaping mass, respectively, which are given by

j GM e a= −( )1 2

j GM e qfall fall fall= +( )1

j GM e qesc esc esc= +( )1

where a, e, qfall, efall, qesc, and eesc are the mean semimajor
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Fig. 8. The eccentricity (filled circles) and inclination (open
circles) of the moon is plotted vs. the semimajor axis of the moon
for all the runs.

Fig. 9. The fraction of the initial disk mass incorporated into the
moon, M/Mdisk, is plotted against the initial specific angular mo-
mentum of the disk, jdisk, for all the KIM00 runs. The triangles
correspond to runs with an initial disk mass of Mdisk = 2 M  and
the squares to runs with Mdisk = 4 M . The filled triangles and
squares are for those runs assuming a coefficient of restitution εn =
0.1, and the open ones for those assuming εn = 0.01. The circles
indicate runs that ended with two moons, defined to be those where
the second largest moonlet has more than 20% of the mass of the
largest moon. In these cases, the second-largest moon is on a horse-
shoe orbit with the largest moon, and the sum of the mass of the
moon and the horseshoe orbiter is plotted. The theoretical estimate
is also shown for Mesc = 0 (solid line) and Mesc = 0.05 Mdisk (dot-
ted line).
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axis and eccentricity of the moon, and the mean perigee
distance and eccentricity of the Earth impactors and the es-
caping material respectively. This conservation argument as-
sumes that the accretion disk is flat (〈i2〉1/2  0) and that all
material left in Earth orbit has been accreted into a single
moon.

From equations (33) and (34), we obtain

M
j j M j j M

j j
disk fall disk fall esc esc

fall

= − + −
−

( ) ( )
(35)

The mean values of each orbital element obtained by KIM00
are a = 1.3 aR, e = 0.04, qfall = 0.3 aR  Re, efall = 0.2, qesc =
1.3 aR, and eesc = 1.1. The relation qesc  a reflects the fact
that mass is ejected mainly due to gravitational scattering
by the moon. Substituting these mean values into equa-
tion (35) yields

M

M

j

GM a

M

Mdisk

disk

R

esc

disk

1 9 1 1 1 9. . .− − (36)

This estimate is also shown in Fig. 9. The results of the high-
resolution N-body simulations (KIM00) agree somewhat
better than those of ICS97 with the above analytic estimate,
as KIM00 found a somewhat larger moon mass.

Since Mesc is always much smaller than Mdisk, we can
neglect the Mesc terms in equation (35). In this case M is a
function of j, jfall, jdisk, and Mdisk. However, j and jfall are
not free parameters but always have almost the same val-
ues since j is determined by the fact that the moon forms
just outside the Roche limit and jfall by the fact that remain-
ing particles collide with the Earth. Then, the distribution
of the disk mass to the moon and the Earth impactors is
determined by the conservation of angular momentum. As
the mass of the escapers is small compared with the disk
mass, we can predict the mass of the moon from equa-
tion (36) when the mass and the angular momentum of the
disk are given. KIM00 confirmed that equation (36) holds
for disks with masses in the range of Mdisk = 0.2–8 M.

The results of the N-body simulation deviate a little from
the analytical estimate at low (~0.6) and high (~1.0) jdisk.
At the low end, the mass of the moon predicted by the simu-
lations is larger than the analytical estimate because the semi-
major axis of these moons and the specific angular momen-
tum of the escaping material are smaller in these cases than
the mean values used in equation (35). As the moons in the
low jdisk cases tend to be smaller in general, they suffer less
gravitational recoil from the disk and move outward by a
smaller distance, yielding a smaller moon semimajor axis
than the mean value. For the high jdisk cases, the analytical
estimate of the lunar mass is larger than that obtained by
the N-body simulations. At the end of these simulations,
there are still about 1000 particles exterior to the moon, so
that accretion is not yet complete. In fact, the sum of the
mass of the moon and the mass of the particles bound to
the Earth exterior to the moon (which would likely be the
final moon mass), is on average ~15% larger than the lunar

mass at t = 1000 TK, and more consistent with the analyti-
cal estimate.

In summary, as a consequence of the evolution of a par-
ticulate protolunar disk, a single large moon on a nearly
noninclined circular orbit is formed just outside the Roche
limit. This result hardly depends on the initial condition of
the particulate disk, as long as

0 62. GM aR 1≤ jdisk ≤ 0. GM aR

Mdisk = 0.2–8 M, and εn = 0.01–0.1, which may include the
plausible conditions for the impact-generated disk. The moon
is always formed around a  1.3 aR. In this case the mass
of the moon is predicted simply by conservation of angular
momentum from the initial disk. The accretion yields (the
fraction of disk material incorporated into the moon) range
from 10% to 55%.

4. EVOLUTION OF
CIRCUMTERRESTRIAL MATERIAL

Two-thirds of the ICS97 simulations produced a single
large moon together with smaller bodies in exterior orbits;
one-third yielded systems with two large moons. The great
majority of the KIM00 simulations yield the former case,
while 10% yield two moons. While most accretion is com-
plete after about a year, the final sweepup of material will
occur over a longer time. Any bodies that remain on stable,
noncolliding orbits after the initial accretion phase eventu-
ally must either collide with the Earth or be swept up by
the moon as it orbitally evolves outward due to tidal inter-
action with the Earth. To date it has been assumed that the
accretional stage of growth can be accurately modeled with-
out including the effects of tidal evolution, as in general the
tidal timescales are much longer than accretion times.

In this section, we address the question of whether or not
a single moon will result from the likely end configurations
of accretion in an impact-generated protolunar disk. For a
complete discussion, see Canup et al. (1999; hereafter
CLS99). Here we describe the basic tidal evolution process,
and then discuss circumstances whereby moonlets and de-
bris could become captured in mean-motion resonances as
they tidally evolve. Such resonances are common among the
satellites of the gas giant planets, and help to stabilize mul-
tiple moon systems in those cases. However, a terrestrial
satellite system differs from the outer satellite systems in
several key respects that predispose the terrestrial system
to a single moon state.

4.1. Tidal Evolution of Moonlets

Exterior to synchronous orbit (the distance at which the
orbital frequency equals the angular rotation rate of the
Earth, 2.3 R  for a 5-hr terrestrial day), tides raised on
Earth by an orbiting satellite lead to a transfer of angular
momentum from Earth’s rotation to the satellite’s orbit,
causing an increase in the orbital radius of the satellite.
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Conversely, satellites within async lose angular momentum
and evolve inward due to terrestrial tides. A simple model
for the rate of evolution of orbital radius due to this pro-
cess can be used to estimate when two moons that are ini-
tially orbitally separated will evolve into orbits that are close
enough to be unstable (Canup and Esposito, 1996). Once
mutual collisions are possible between objects with a > aR,
the material involved will likely eventually accrete into a
single body. Here we consider the system evolution until
this occurs (for a description of the later tidal evolution of
the Moon, see chapter by Touma, 2000).

The rate of evolution of orbital radius due to terrestrial
tides is approximately given by

da

dt
k

G

M
R ma−3 22

5 11/2 sin( )δ (37)

where k2 is the Earth’s second order Love number, m and a
are the mass and orbital radius of the orbiting body, and δ
is the tidal lag angle (e.g., Burns, 1986). For a constant lag
angle, equation (37) can be integrated to yield the orbital
position as a function of time

a t Kmt a( ) = +13

2 0
13/2

2/13

(38)

where

K k
R

M

GM

R
≡ 3 22

13/2

3
sin( )δ (39)

For sufficiently large t, a(t) ∝ (mt)2/13, and so the most
massive moonlet will have the largest a value.

Consider two moonlets 1 and 2 with masses m1 and m2
and semimajor axes a1 and a2 (with a1 < a2). The evolution
of the ratio (a1/a2) as two moonlets tidally evolve is impor-
tant, because mean-motion resonances (which each occur
at some characteristic (a1/a2) value) affect the system sta-
bility. A mean-motion resonance occurs when the ratio of
the orbital motions of the two bodies is nearly a ratio of
integers, e.g., for the (p + q):p resonance, Ω1/Ω2  (p + q)/p
where p and q are integers, and q is the order of the reso-
nance. When two moonlets evolve through a resonance, the
outcome is dependent upon whether d(a1/a2)/dt is positive
(typically referred to as the “converging” case) or negative
(the “diverging” case).

From equation (37)

d

dt

a

a

K

a
m a a m a a1

2 2
2 1 2 1

11 2
2 1 2

11 2= −( )− −/ / (40)

The ratio (a1/a2) asymptotes to (m1/m2)2/13, the value at
which d(a1/a2)/dt = 0, (see Canup and Esposito, 1996). As
two moonlets evolve to this asymptotic value, equation (40)
implies three possible evolution paths: (1) m1/m2 > 1: moon-
let 1 overtakes moonlet 2; (2) (a1/a2)13/2 < m1/m2 < 1: moon-
let 1 does not overtake moonlet 2 and (a1/a2) increases to the

asymptotic value since d(a1/a2)/dt > 0; (3) m1/m2 < (a1/a2)13/2:
moonlet 1 does not overtake moonlet 2 and (a1/a2) decreases
to the asymptotic value since d(a1/a2)/dt < 0.

In both (1) and (2), capture into resonance is possible,
while capture is precluded in case (3). Before discussing
further the effects of mean-motion resonances in the next
section, we need to comment briefly on the evolution of
satellite eccentricities due to tidal interaction.

From Kaula (1964) and Goldreich and Soter (1966), the
rate of change of eccentricity is

de

dt

e

a

da

dt
A

tot

19

8

28

19
−sgn( )σ (41)

where the first and second terms are due to tides raised on
Earth and the satellite, respectively, da/dt| is given in equa-
tion (37), σ = (2ω – 3Ω), ω is the angular rotation rate of
the Earth, and A is defined as

A
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(42)

the ratio of satellite-to-planet effects used in Mignard (1980,
1981; see also Kaula, 1964; Burns, 1986), where the starred
quantities are those of the satellite. The lag angle δ is re-
lated to the tidal dissipation factor, Q, by Q ~ 1/sin(2δ). For
the current Earth-Moon system, (k2/Q)   0.0011, (k2/Q)  
0.021, and so A ~ 0.5 (Burns, 1986; Dickey et al., 1994);
thus currently de/dt from equation (41) is positive. However,
we know that Q has varied over the Moon’s history, as its
current value implies that the Moon achieved its present po-
sition after only about 2 b.y. (see Burns, 1986). Given this
uncertainty, a range of A values from 0 to 20 is plausible
during the Moon’s evolutionary history, the latter represent-
ing a case where only solid body tides contribute to terres-
trial dissipation.

4.2. Mean-Motion Resonances between Moonlets

As moonlets orbitally evolve due to tides they will pass
through mutual mean-motion resonances. The evolution of
the system during passage through or capture into an iso-
lated resonance can be described by means of the adiabatic
theorem (see, e.g., Dermott et al., 1988). Capture into reso-
nance is only possible for converging orbits with d(a1/a2)/
dt > 0; for co-planar orbits with d(a1/a2)/dt < 0, passage
through resonance results only in a jump in eccentricity and
not permanent capture (see Dermott et al., 1988; Peale,
1986).

Figure 10 is a plot of the asymptotic (a1/a2) value [= (m1/
m2)2/13] due to tidal evolution as a function of moonlet mass
ratio; also shown are the locations of first- and second-or-
der mean-motion resonances. Below the solid curve orbits
are tidally converging (d(a1/a2)/dt > 0), and capture into
resonance is possible, depending on factors such as moon-
let eccentricity and the rate of orbital evolution. Also shown
(dashed line) is the critical (a1/a2) ratio for two-body sta-
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bility [i.e., (a2 – a1) ≤ 3.5 rH] (Gladman, 1993) for (m1 +
m2) = M . Above this ratio, resonances are not isolated,
orbits are chaotic, and mutual collisions can occur. Because
of the large mass ratio of the Moon to the Earth, the only
low-order resonance that lies well outside the two-body sta-
bility separation for bodies totaling a lunar mass is the 3:1.
Thus there are a limited number of low-order resonances
in which two Earth-orbiting moonlets whose total mass is
a lunar mass could become captured.

CLS99 conducted a stability study for mean-motion ec-
centricity resonances in the protolunar disk using both ana-
lytical techniques and numerical simulations. In general,
resonances lead to eccentricity growth, and so long-lived
capture in a resonance requires that this growth is offset by
eccentricity damping due to tidal evolution. From equa-
tion (41), it is seen that the effectiveness of the latter pro-
cess is a function of A. For resonances where capture was
possible, CLS99 calculated equilibrium eccentricities due to
the combined effects of the resonance and terrestrial and
satellite tides, as a function of A. This approach, coupled
with N-body integrations including the acceleration on or-
biting bodies due to terrestrial tides, showed that the typi-
cal end states predicted by the ICS97 simulations were
unstable, and would likely yield a single moon in each case.
Their findings are most easily summarized in terms of the
initial relative positions and masses of the moonlets.

4.2.1. m1 > m2 case. In this case, orbits converge due
to tides and it would appear likely that the inner moonlet
would overtake and accrete the outer moonlet. However,
capture into resonance can occur, which could prevent
mutual collision. The equilibrium eccentricity for the outer
body in an exterior mean-motion eccentricity resonance due
to the combined effect of the resonance, and satellite and
terrestrial tides is, in general, less than unity only for A ∼>
20. Thus for 0 ≤ A ≤ 20, exterior eccentricity resonances are
unstable, and a massive inner moonlet will likely sweep up
smaller outer moonlets as it tidally evolves outward.

4.2.2. m1 ~ m2 case. Here capture into resonance can
occur, and stable equilibrium values of moonlet eccentrici-
ties in resonance are achieved for plausibly high rates of
satellite dissipation (CLS99). However, in this case reso-
nances destabilize as the relative importance of satellite to
planetary tides approaches its current value of A ~ 1.

For the two-moon cases found in ICS97 (which fall into
this category), a more immediate issue for determining sta-
bility is the proximity of the inner moon to synchronous
orbit, interior to which terrestrial tides lead to a decrease in
orbital radius. CLS99 found that the inner moon in all of
the ICS97 two-moon cases evolved inward and collided with
the Earth in times as short as a year (assuming a terrestrial
day of 5 hr).

4.2.3. m1 << m2 case.  In this case, the asymptotic value
of (a1/a2) achieved as bodies tidally evolve is smaller than
that needed for instability [(a1/a2) > 0.64 for instability with
two moonlets totaling a lunar mass]. The initial value of (a1/
a2) would be greater than ~0.4–0.5 for potentially long-lived
m1 << m2 pairs, assuming an outer moonlet with a ~ 1–1.5 aR
and an inner particle just outside the co-rotation radius
(2.3 R ). In these cases, orbits tidally diverge [(a1/a2) de-
creases] and capture into resonance is precluded. The larger
exterior body would tidally evolve outward and leave smaller
inner bodies behind, potentially likely yielding a stable,
multiple moon system. However, simulations do not predict
that this configuration should persist after accretion from a
protolunar disk, since perturbations by a moon that forms
with close to a lunar mass appear to cause inner debris to
collide with the Earth.

4.2.4. a1  a2 case. Some recent accretion simulations
predict the formation of moon pairs occupying horseshoe
orbits (KIM00, see also section 3). The 1:1 resonance rep-
resents an interesting case, as tidal torques will cause the
libration amplitude to decrease, increasing the stability of
the resonance with time (e.g., Yoder et al., 1983; Peale,
1986; Fleming and Hamilton, 2000). Depending on the li-
bration amplitude, the coorbital configuration could be de-
stabilized through physical collisions with exterior objects
encountered as the system tidally evolved outward. Another
possibility is that scattering events with nearby objects could
sufficiently increase eccentricities to allow for close encoun-
ters between the coorbitals.

Thus several factors appear to predispose a terrestrial sys-
tem to a single moon state. First is the rapid rate of orbital
evolution of satellites due to tidal interaction with the Earth.
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Fig. 10. The solid curve is the asymptotic value of (a1/a2) due
to tidal interaction with the Earth as a function of moonlet mass
ratio. Above and to the left of the curve, (a1/a2) decreases as moon-
lets tidally evolve; below and to the right, (a1/a2) increases due to
tides. Also shown are the positions of first- and second-order mean-
motion resonances (dotted lines). The dashed horizontal line is the
(a1/a2) separation required for two-body stability with (m1 + m2) =
M . The only first- or second-order resonance that is well outside
the 3.5 rH stability separation in this case is the 3:1 (from CLS99).
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Even for solid-body tidal Q values (Q ~ 100s), a moon that
forms close to the Earth evolves out to 20 R (a typical outer
limit for an impact-generated debris cloud; Cameron and
Benz, 1991) in only 107–108 yr. Second, terrestrial Q val-
ues are within an order-of-magnitude of likely tidal Q val-
ues for orbiting satellites. This means that the plausible
range of “A values” — the relative role of satellite to plan-
etary tides in affecting satellite eccentricity evolution ex-
tends only to A ~ 20, with a current value of A ~ 0.5–1. For
a satellite orbiting a gaseous planet, A ~ 1000, and satellite
orbits are circularized by satellite tides. In a terrestrial sys-
tem, planetary tides act to increase satellite eccentricities,
destabilizing resonances and increasing mutual collisions.
The large mass-ratio of the Moon to the Earth, coupled with
lunar formation from a centrally condensed disk appears to
insure that small inner disk material inside the Roche limit
is effectively perturbed onto the Earth (ICS97, KIM00).
However, an open question remains as to whether moonlet
pairs that form in horseshoe orbits could remain stable over
long times, and this issue merits investigation.

5. CONCLUSIONS

We have reviewed lunar accretion from a particulate
protolunar disk that might result from a giant impact event.
The typical radial extent of such a disk is believed to be on
the order of the Roche limit, aR. In the accretion process,
terrestrial tidal forces and collective effects such as the de-
velopment of spiral arms thus can play an important role
in the protolunar disk case. The Earth’s tidal force partially
inhibits accretion of particles in the Roche zone (0.85 aR ∼>
a ∼> 1.4 aR), where accretion is dependent on the mass ratio
of colliding bodies.

N-body integrations have been utilized to simulate the
evolution of particulate protolunar disks, and have revealed
that accretion in most such disks results in the formation
of a single large moon. The moon is forms with a  1.3 aR
on a nearly noninclined, circular orbit. The evolution of a
particulate protolunar disk consists of two basic stages. The
first stage is a rapid growth stage, where material transferred
outside the Roche limit as the disk spreads (together with
material initially outside the Roche limit) self-gravitation-
ally collapses and subsequently accretes to form a moon.
The timescale for this stage is on the order of a month.
Rapid angular momentum transfer by transient instabilities
in the disk leads to the short (approximately 1 month) disk-
spreading times, and orbital periods of only several hours
yield a comparably short accretion time. These results hardly
depend on the assumed initial condition of the disk, as long
as the disk mass is on the order of 1 M and it is assumed
to be well represented by a particulate distribution. The
second stage, in which the moon accretes material spread-
ing outward from the inner disk, persists for about 1 yr. The
moon masses predicted by the N-body simulations coincide
well with analytical estimates based on conservation of
angular momentum of the disk. The efficiency of incorpo-
ration of disk material into a moon is 10–55%, and the yield

increases linearly with the initial specific angular momen-
tum of the disk. Recent simulations (with N = 10,000 par-
ticles) tend to predict a a slightly larger moon mass and a
higher probability of a single moon than previous simula-
tions (with N ~ 1000). In cases of initial disks that radially
extend beyond the Roche limit, multiple moons may result
from the initial accretion phase. Simulations of the long-
term evolution of multiple moons in terrestrial orbit, or of
an inner moon with smaller exterior debris, find that all such
systems destabilize as they tidally evolve, yielding a single
moon in most cases.

The obtained ( jdisk vs. M/Mdisk) relationship tells us that
in order to form a moon with a present lunar mass, we need

j GM adisk R0 9.

for Mdisk = 2 M  and

j GM adisk R0 7.

for Mdisk = 4 M  respectively. Thus, in order to form the
present-sized moon from a light disk, the disk must be ex-
tended, while a compact disk may also yield a lunar-sized
moon if it is very massive. This relationship thus provides
an important constraint on the type of disk that must be
created by a giant impact to yield the Moon. Simulations
of the impact event to date suggest that to obtain the re-
quired disk we may need an impact with angular momen-
tum significantly larger than the present Earth-Moon angular
momentum, or an impact with a reduced-mass Earth (e.g.,
Cameron and Canup, 1998; Canup et al., 2000; see also
chapters by Cameron, 2000, and Canup and Agnor, 2000).

An important factor that is not considered in previous,
purely dynamical models is the thermal evolution of disk
material. As a first step in investigating the evolution of a
protolunar disk, the disk was assumed to be a particulate
distribution. It is, however, believed that an entirely particu-
late distribution is not the most probable state for the proto-
lunar disk when it condenses from the silicate vapor or liquid
droplet cloud produced by the giant impact. Furthermore,
the accretion timescale predicted by the N-body simulations
is so short that it would be difficult for particles to cool by
radiation in the course of accretion (e.g., Thompson and Steven-
son, 1988). Indeed, a significant fraction of the accreted
moon might be remelted or even reevaporated during ac-
cretion.

A coexistence of vapor/liquid and solid phases would be
likely in the disk. Disk spreading and accretion might then
instead proceed on the cooling timescale of the entire disk
(~10–100 yr), much longer than the accretion time predicted
by the N-body simulations of a particulate disk. However,
a single large moon with mass predicted by equation (36)
would likely still be the end result, as this is a basic conse-
quence of conservation of angular momentum as we dis-
cuss below.

For example, consider lunar accretion from a disk com-
posed of vapor, liquid, and solid phases. The outer disk
would likely be cooler than the inner disk (due to a greater
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surface area for radiative cooling and lower disk surface
densities), so that the disk might consist of vapor/liquid
components at small radii and of solid particles at large radii.
As the outer particulate disk becomes dynamically cold
through collisional damping, instabilities develop and rap-
idly transfer angular momentum in the outer disk. For this
situation, we can estimate the mass of the accreted moon
formed from only the outer particulate portion of the disk.
Applying conservation of mass and angular momentum to
the outer particulate disk, we can obtain a similar result as
equation (36), where in this case we use the radius of the
inner edge of the outer particulate disk for qfall. Because the
angular momentum transfer rate in the inner vapor/liquid
disk would be significantly smaller than that in the outer
particulate disk where spiral structure is prominent, it would
be valid to consider mass and angular momentum transfer
only within the outer disk. As the disk cools, the particu-
late region then extends inward. Finally when the disk be-
comes an entirely particulate disk, we may have the same
relation as equation (36) as long as the accreted moon is
located just outside of the Roche limit. This is because the
lunar accretion is controlled by the mass and angular mo-
mentum conservations of the disk that are independent of
the phase of lunar material. (If the inner vapor/liquid disk
diffuses well beyond the Roche limit, moons might accrete
well outside the Roche limit and the characteristics of the
accreted moons might change.)

While the mass of the final moon may not be overly
sensitive to thermal considerations, the specific properties
of the Moon’s orbit could be. Recently, Ward and Canup
(2000) have shown that a single resonant interaction be-
tween a lunar-sized moon formed outside the Roche limit
and an inner disk can increase the moon’s orbital inclina-
tion from an initially low value (on the order of 1°) to val-
ues as high as 15°. This may offer a natural explanation for
the origin of the Moon’s initial inclination, which is known
to have been ~10° from back integrations of the Moon’s
current orbit (see chapter by Touma, 2000). However, the
Ward and Canup (2000) mechanism is effective only if an
inner disk with at least 25% of a lunar mass persists for
decades to centuries after the Moon accretes. Examination
of these and other issues will require a new generation of
protolunar disk models, including a detailed investigation
of the evolution of a multiphase protolunar disk.
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