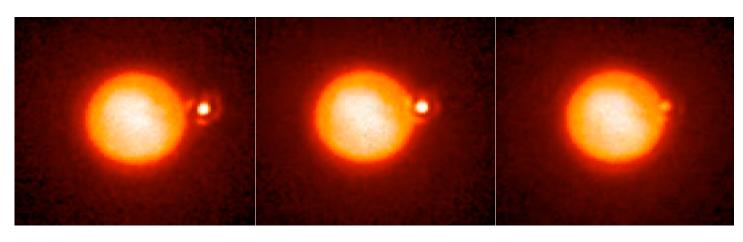


Portable Occultation Systems for Studies of Pluto and Triton


Leslie Young & Cathy Olkin
Southwest Research Institute

Lightbucket Astronomy Conference Waimea, Hawaii, January 1, 2011

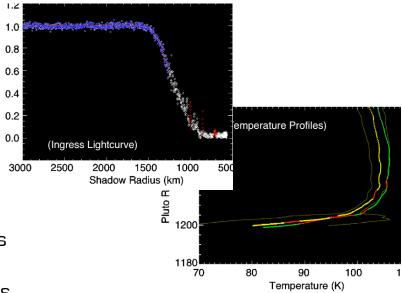
What is a Stellar Occultation?

- A stellar occultation occurs when an object passes between an observer and a distant star.
- For bodies with atmospheres, like Pluto, **differential refraction** defocuses starlight, leading to a gradual dimming of the stellar flux.
- For bodies with no atmosphere, such as Pluto's moons Charon or Hydra, the stellar flux drops to zero abruptly when it is cut off by the solid surface.
- Given multiple chords across an object, we can reconstruct the exact location of the passage of the occultation shadow over the Earth and the size and shape of the occulting object.

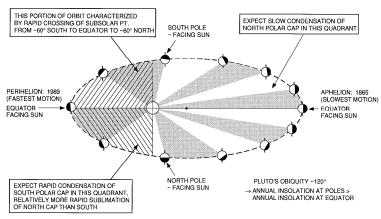
Three frames of a time series showing Saturn's moon Titan (disk) occulting a star (point source with diffraction pattern) as seen with adaptive optics from Palomar, 2001-Dec-20. Bouchez et al. 2003, SPIE 4839, 1045.

Why Observe Stellar Occultations of Pluto and Triton?

Normalized Flux


- Atmospheric pressure and temperature
 - Occultations probe atmospheric pressures and temperatures at sub-km scales, which lets us investigate atmospheric energetics and dynamics.

Seasonal variation


Insolation and surface temperatures on Pluto and Triton vary seasonally due to its large orbital eccentricity and/or obliquity. The surface pressure is a function of frost temperature and may change seasonally by orders of magnitude. Using occultations, we found that Pluto's atmosphere doubled between 1988 and 2002, with slower change from 2002 to 2010. Triton's atmosphere doubled between 1989 and 1997. Continued occultations give the best constraints on models of atmospheric change.

Context for NASA's mission to Pluto

 New Horizons will give a snapshot of Pluto during its 2015 flyby. We need a temporal context to fully interpret the New Horizons data. Occultations will provide this context.

Pluto occultation of 2006 June 12. Top: Light curve.. Bottom: temperatures vs. radius. From Young et at. 2008, AJ 136, 1757.

Schematic of Pluto's orbit and insolation patterns. From Hansen and Paige 2006, Icarus, 120, 247.

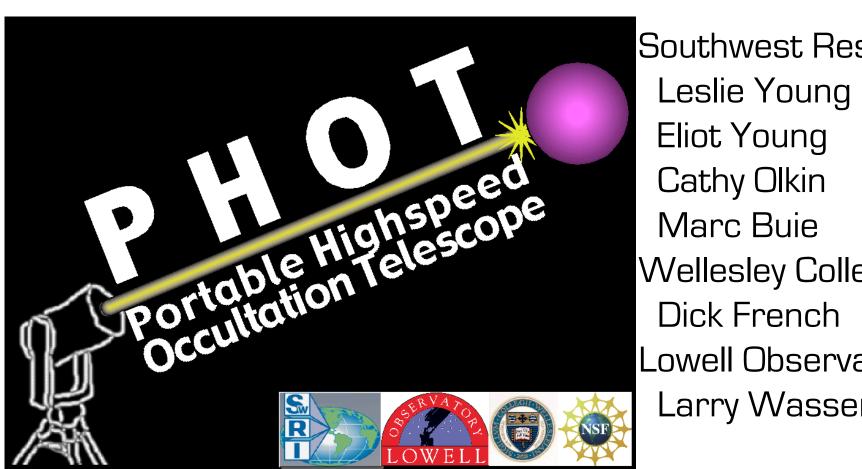
Why Observe Stellar Occultations of Charon and Hydra?

Sizes


 Pluto's large moon, Charon (1200 km diameter), subtends only 50 milliarcsec. Its small moons, Nix and Hydra (50-150 km diameter), subtend about 5 milliarcsec. Occultations are the only way to directly measure the sizes of the small moons.

Orbits

If Pluto and a moon occult the same star, then their relative
positions can be measured very accurately. This will improve our
knowledge of their orbits around the Pluto-system barycenter,
which can be used to constrain the masses of Nix and Hydra,
and origin scenarios.


Support for NASA's mission to Pluto

 The orbits of Nix and Hydra are currently uncertain enough that some of the highest-resolution images may miss their targets unless the orbits are improved. We have plans to do this with images taken with *New Horizons* itself in the weeks before encounter. Improved orbits now would make our flyby more robust.

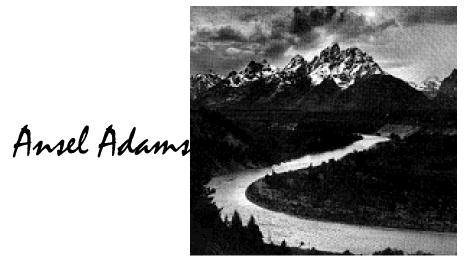
Pluto and its moons Charon, Nix, and Hydra, as images from HST on 2006, Feb 15. Pluto and Charon are barely resolved, and Nix and Hydra are unresolved. "Size" of the objects indicate their relative brightness. Credit: NASA, ESA, H. Weaver (JHU/APL), S. Stern (SwRI), and the HST Pluto Companion Search Team.

PHOT: A team, a goal, some hardware

Southwest Res. Inst.

Wellesley College

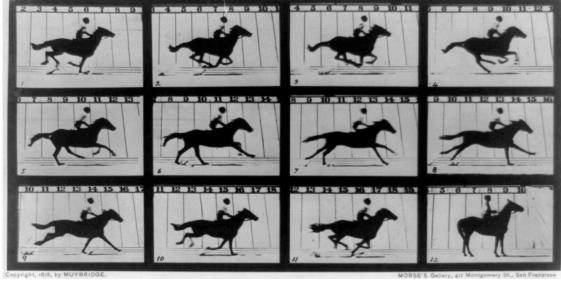
Lowell Observatory


Larry Wasserman

Pluto goals: observe one or more Pluto event per year, with multiple wavelengths and high SNR where possible.

4 MicroMax Cameras, bought in 2005

Henri Cartier-Bresson


Dorothea Lange

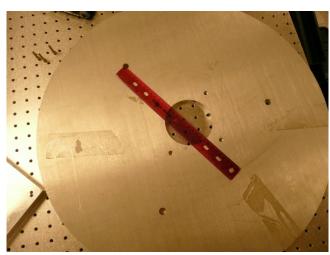
Walker Evans


3 PhotonMax Cameras, bought in 2007

Eadweard Muybridge

Gjon Mili

Doc Edgerton


Characteristics of PHOT cameras

	MicroMax	PhotonMax
Field of View	512x512 13 µm pixels	512x512 16 µm pixels
Frame Transfer	Yes	Yes
Digitization rate	100 KHz & 1 MHz	1 MHz and 10 MHz
Read Noise	3 e- at 100 KHz 12 e- at 1 MHz	7 e- at 1 MHz
Thermelectricly Cooled	To -45 C	To -70 C
Quantum efficiency	>90%	>90%
Externally Triggerable	Yes	Yes

PHOT cameras have been mounted on 25 different telescopes in 10 countries

