Table of Contents

Part 1 Getting Started...11

Introduction..13
 Summary of Chapter Information..13
 Online Help...15
 Tool Tips and Status Bar Messages...15
 Additional Documentation..15

Chapter 1 Installing and Starting WinView/32.............................17
 System Requirements..17
 Your System Components..19
 Installing WinView/32...20
 Installing the PCI Card Driver..22
 Installing the USB 2.0 Card Driver..23
 Changing Installed Components, Repairing, or Uninstalling/Reinstalling WinView/32. 24
 Starting WinView/32...24

Chapter 2 Basic Hardware Setup...27
 Introduction..27
 Basic Hardware Overview..27
 Entering the Default Camera System Parameters into WinView........29
 Entering Controller and Detector Characteristics...........................37
 Entering the Data Orientation..41
 Entering the Interface Communication Parameters........................42
 Entering the Cleans/Skips Characteristics......................................43

Chapter 3 Initial Data Collection..47
 Introduction..47
 Temperature Control..48
 Cleans and Skips..49
 Experiment Setup Procedure (all controllers)...............................49
 Data Collection Procedures (Controller-Specific)..........................53
 Data Collection - All Controllers...56

Chapter 4 Opening, Closing, and Saving Data Files.....................57
 Introduction..57
 Opening Data Files...57
 Saving Data Files...60
 Closing a Data File...61
 Deleting Data Files...62

Chapter 5 Displaying the Data..63
 Introduction..63
 Screen Refresh Rate...64
Part 2 Advanced Topics...85

Chapter 6 Cleaning..87
 Introduction...87
 Clean Cycles ..87
 Continuous Cleans ...88
 Continuous Cleans Instruction...90
 ROIs and Cleaning ..90
 Kinetics and Cleaning ...90

Chapter 7 ROI Definition & Binning..93
 Overview..93
 Binning (Group and Height parameters) ...94
 Defining ROIs ..95

Chapter 8 Correction Techniques...99
 Introduction...99
 Background Subtraction ..99
 Flatfield Correction ..101
 CCD Blemishes ..102
 Cosmic Ray Removal ..102

Chapter 9 Image Math ..103
 Introduction...103
 Source Data and Destination Selection ..103
 Operations..104
 Operation Descriptions ...105
 Procedure ..107

Chapter 10 Post-Acquisition Mask Processes109
 Introduction...109
 Edge Enhancement ..110
 Sharpening Functions ..112
 Smoothing Functions ..113
 Morphological Functions ...114
 Custom Filter ..116
 Look Up Table ...117
 References..119

Chapter 11 Additional Post-Acquisition Processes..............................121
 Introduction...121
 Threshold and Clipping ...122
 Cross Section ...123
 Binning and Skipping ...124
Table of Contents

- **Histogram Calculation** .. 126

Chapter 12 Printing ..127
- Introduction... 127
- Setting up the Printer .. 127
- Printing Directly from WinView/32... 128
- Print Preview .. 128
- Printing a Screen Capture ... 129
- Saving as TIF and Printing ... 130

Chapter 13 Pulser Operation...131
- Introduction... 131
- PG200 Programmable Pulse Generator .. 131
- Programmable Timing Generator (PTG).. 135
- DG535 Digital Delay/Pulse Generator ... 138
- Timing Generator Interactive Trigger Setup .. 145

Chapter 14 Custom Toolbar Settings ...147
- Introduction... 147
- Displaying the Custom Toolbar .. 147
- Customizing the Toolbar .. 147
- Individual Dialog Item Descriptions ... 148

Chapter 15 Software Options ..151
- Introduction... 151
- Custom Chip (WXCstChp.opt)... 151
- Custom Timing (WXCstTim.opt)... 152
- FITS (FITS.exe).. 152
- Macro Record (WXmacrec.opt) ... 153
- Virtual Chip (WXvchip.opt)... 154

Part 3 Reference ...159

Appendix A System and Camera Nomenclature ...161
- System, Controller Type, and Camera Type Cross-Reference 161
- System and System Component Descriptions .. 163
- CCD Array Designators.. 166

Appendix B Data Structure ...169
- Version 1.43 Header ... 169
- Version 1.6 Header ... 170
- Version 2.5 Header (3/23/04) ... 173
- Definition of Array Sizes... 177
- Custom Data Types Used In the Structure ... 177
- Reading Data .. 178

Appendix C CD ROM Failure Work-Arounds ...179

Appendix D WinView/32 Repair and Maintenance ..181
- Install/Uninstall WinView/32 Components at a Later Time .. 181
- Installing More than One Version of WinView/32 ... 183
Appendix E USB 2.0 Limitations ... 185

Appendix F Troubleshooting ... 187
 Introduction ... 187
 Camera1 (or similar name) on Hardware Setup dialog box 187
 Controller Is Not Responding ... 188
 Data Loss or Serial Violation ... 188
 Data Overrun Due to Hardware Conflict message 188
 Data Overrun Has Occurred message ... 189
 Demo is only Choice on Hardware Wizard:Interface dialog (Versions 2.5.19.0 and earlier) ... 189
 Demo, High Speed PCI, and PCI(Timer) are Choices on Hardware Wizard:Interface dialog (Versions 2.5.19.0 and earlier) 191
 Detector Temperature, Acquire, and Focus are Grayed Out (Versions 2.5.19.0 and earlier) ... 193
 Error Creating Controller message ... 194
 No CCD Named in the Hardware Wizard:CCD dialog (Versions 2.5.19.0 and earlier) ... 194
 OrangeUSB USB 2.0 Driver Update ... 195
 Program Error message .. 196
 Serial violations have occurred. Check interface cable 197

Appendix G Glossary ... 199

Warranty & Service .. 201
 Limited Warranty .. 201
 Contact Information .. 204

Index .. 205

Figures
 Figure 1. RSConfig dialog box .. 24
 Figure 2. Opening WinView/32 from the Program Manager 25
 Figure 3. Splash screen ... 25
 Figure 4. Main WinView/32 window ... 26
 Figure 5. Setup menu .. 27
 Figure 6. Possible System Configurations .. 28
 Figure 7. Air-Cooled System (with Internal Controller) Diagram 28
 Figure 8. Liquid- or Air-Cooled System (with External Controller) Diagram 29
 Figure 9. Cryo-Cooled System (with External Controller) Diagram 29
 Figure 10. Camera Detection Wizard - Welcome dialog box 30
 Figure 11. Camera Detection Wizard - Detected Hardware dialog box ... 30
 Figure 12. Camera Detection Wizard - Welcome (Manual selected) dialog box 31
 Figure 13. Camera Detection Wizard - Optional Configuration Disk dialog box 32
 Figure 14. Camera Detection Wizard - Test Image dialog box 32
 Figure 15. Camera Detection Wizard - Finished dialog box 33
 Figure 16. Optional Configuration Disk dialog box 34
 Figure 17. PVCAM dialog box ... 34
Table of Contents

Figure 18. Interface dialog box ... 34
Figure 19. Controller Type dialog box ... 35
Figure 20. Detector/Camera/CCD Setup dialog box 35
Figure 21. Controller/Camera tab page (left, 2.5.19.0 and earlier; right, 2.5.19.6 and later) ... 37
Figure 22. Display tab page; left graphic applies to all controllers except ST-121; right graphic applies to ST-121 only 41
Figure 23. Interface tab page ... 42
Figure 24. Cleans/Skips tab page .. 43
Figure 25. Vertical Skips ... 45
Figure 26. Temperature dialog box ... 48
Figure 27. Experiment Setup: Main tab page; left, all but PI-MAX; right, PI-MAX 49
Figure 28. Timing tab page ... 50
Figure 29. Data Corrections tab page .. 51
Figure 30. Generic ADC tab page ... 51
Figure 31. Data File dialog box ... 52
Figure 32. File Browse dialog box .. 52
Figure 33. Acquisition menu .. 53
Figure 34. ST-133 Interactive Camera dialog box 53
Figure 35. PentaMAX Interactive Operation dialog box 55
Figure 36. Typical Data Acquisition Image .. 56
Figure 37. Open dialog box .. 57
Figure 38. Circuit.spe Displayed ... 59
Figure 39. Data File Save As dialog box ... 60
Figure 40. Save As Data Types ... 60
Figure 41. Data File tab page ... 61
Figure 42. Right-click File Operations menu ... 62
Figure 43. Image Display of 256 Data Strips .. 63
Figure 44. 3D Image Display of 10 Data Strips .. 63
Figure 45. 3D Graph with Two Data Strips .. 64
Figure 46. Open dialog box .. 65
Figure 47. Circuit.spe Image ... 65
Figure 48. Brightness/Contrast dialog box ... 66
Figure 49. Circuit.spe with Region selected for viewing 67
Figure 50. Circuit.spe expanded to show Defined Region 67
Figure 51. Data Window Context menu .. 68
Figure 52. Normal Context menu ... 68
Figure 53. ROI Context menu ... 69
Figure 54. Label Display action ... 69
Figure 55. Label Options subdialog box .. 70
Figure 56. Label Text Entry box ... 70
Figure 57. Data with Finished Label ... 70
Figure 58. Edit box with Line-wrapped Label and Finished Label 71
Figure 59. ROI resized to correct Line-wrapping 71
Figure 60. Display after changing Font Selection 72
Figure 61. 3D Graph with Five Data Strips ... 72
Figure 62. Open dialog box ... 73
Figure 63. Display Layout dialog box .. 73
Figure 64. Hid-lamp.spe 3-D Graph .. 74
Figure 65. Hid-lamp.spe 3D Graph with Region selected for viewing 75
Figure 66. Hide-lamp.spe 3D Graph expanded to show Defined Region 76
Figure 67. Graphical Display with Information box ... 76
Figure 68. Single Strip displayed graphically... 77
Figure 69. 3D display with Cursor Curve and Marker Curves .. 79
Figure 70. 3D Plot with Hidden Surfaces ... 80
Figure 71. Display Layout dialog box .. 81
Figure 72. Range tab page .. 81
Figure 73. Selecting the Large Cursor .. 81
Figure 74. Circuit.spe with Axes and Cross-Sections .. 82
Figure 75. Information box .. 82
Figure 76. Axes tab page .. 83
Figure 77. Fonts dialog box .. 83
Figure 78. Color tab page .. 83
Figure 79. Display Layout Color Palette ... 84
Figure 80. Clean Cycles in Freerun Operation .. 87
Figure 81. Cleans/Skips tab page .. 88
Figure 82. Timing Tab page: External Sync with Continuous Cleans Selected 88
Figure 83. External Sync Timing Diagram ... 89
Figure 84. External Sync with Continuous Cleans Timing Diagram 89
Figure 85. Cleans/Skips tab page: Continuous Cleans Instruction 90
Figure 86. Assumed CCD Array Orientation ... 93
Figure 87. Single Full-width ROI .. 95
Figure 88. Single Partial-width ROI .. 95
Figure 89. Multiple Full-width ROIs .. 95
Figure 90. Multiple ROIs with Different Widths .. 95
Figure 91. Multiple Imaging ROIs and Resulting Data ... 96
Figure 92. ROI Setup tab page ... 97
Figure 93. Data Corrections tab page .. 100
Figure 94. Blemish File .. 102
Figure 95. Math dialog box .. 103
Figure 96. Operation tab page ... 105
Figure 97. Input tab page ... 109
Figure 98. Output tab page ... 109
Figure 99. Edge Enhancement Parameters tab page ... 110
Figure 100. Original Image (left) and Edge-detected Image (right) 111
Figure 101. Sharpening Parameters tab page ... 112
Figure 102. Original Image (left) and Smoothed Image (right) 113
Figure 103. Smoothing Parameters tab page ... 113
Figure 104. Morphological Parameters tab page .. 114
Figure 105. Original Image (left) and Dilated Image (right) .. 114
Figure 106. Original Image (left) and Eroded Image (right) .. 114
Figure 107. Original Image (left) and Opened Image with Three Iterations (right) 115
Figure 108. Filter Matrix tab page ... 116
Figure 109. Look-Up Table ... 117
Figure 110. Input tab page ... 121
Figure 111. Output tab page ... 121
Figure 112. Threshold and Clipping Parameters tab page ... 122
Figure 113. Example Cross Sections of an ROI .. 123
Figure 114. Cross Section Parameters tab page .. 123
Figure 115. Postprocessing Binning and Skipping Parameters tab page 124
Figure 116. Postprocessing Histogram Parameter tab page ... 126
Figure 117. Print Setup dialog box .. 127
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>118</td>
<td>Print dialog box</td>
<td>128</td>
</tr>
<tr>
<td>119</td>
<td>Print Preview window</td>
<td>128</td>
</tr>
<tr>
<td>120</td>
<td>Pulsers dialog box</td>
<td>131</td>
</tr>
<tr>
<td>121</td>
<td>PG200 Comm Port tab page</td>
<td>132</td>
</tr>
<tr>
<td>122</td>
<td>PG200 Triggers tab page</td>
<td>132</td>
</tr>
<tr>
<td>123</td>
<td>PG200 Gating tab page</td>
<td>133</td>
</tr>
<tr>
<td>124</td>
<td>Repetitive Gating Setup dialog box</td>
<td>133</td>
</tr>
<tr>
<td>125</td>
<td>Sequential Gating Setup dialog box</td>
<td>134</td>
</tr>
<tr>
<td>126</td>
<td>Camera State dialog box</td>
<td>135</td>
</tr>
<tr>
<td>127</td>
<td>Pulsers dialog box</td>
<td>135</td>
</tr>
<tr>
<td>128</td>
<td>PTG Triggers tab page</td>
<td>136</td>
</tr>
<tr>
<td>129</td>
<td>PTG Gating tab page</td>
<td>136</td>
</tr>
<tr>
<td>130</td>
<td>Repetitive Gating Setup</td>
<td>137</td>
</tr>
<tr>
<td>131</td>
<td>Sequential Gating Setup box</td>
<td>137</td>
</tr>
<tr>
<td>132</td>
<td>Camera State dialog box</td>
<td>138</td>
</tr>
<tr>
<td>133</td>
<td>DG535 dialog box</td>
<td>138</td>
</tr>
<tr>
<td>134</td>
<td>DG535 Comm Port tab page</td>
<td>139</td>
</tr>
<tr>
<td>135</td>
<td>DG535 Triggers tab page</td>
<td>139</td>
</tr>
<tr>
<td>136</td>
<td>DG535 Gating tab page</td>
<td>140</td>
</tr>
<tr>
<td>137</td>
<td>Repetitive Gating Setup</td>
<td>140</td>
</tr>
<tr>
<td>138</td>
<td>Sequential Gating Setup dialog box</td>
<td>141</td>
</tr>
<tr>
<td>139</td>
<td>Range Limits Exceeded Warning</td>
<td>142</td>
</tr>
<tr>
<td>140</td>
<td>Gate Width/Delay Sequence dialog box</td>
<td>144</td>
</tr>
<tr>
<td>141</td>
<td>Sequence Values File dialog box</td>
<td>144</td>
</tr>
<tr>
<td>142</td>
<td>Timing Generator Interactive Trigger Setup</td>
<td>145</td>
</tr>
<tr>
<td>143</td>
<td>Default Custom Toolbar</td>
<td>147</td>
</tr>
<tr>
<td>144</td>
<td>Customize Toolbar dialog box</td>
<td>147</td>
</tr>
<tr>
<td>145</td>
<td>Custom Chip tab page</td>
<td>151</td>
</tr>
<tr>
<td>146</td>
<td>Custom Timing tab page</td>
<td>152</td>
</tr>
<tr>
<td>147</td>
<td>FITS dialog box</td>
<td>153</td>
</tr>
<tr>
<td>148</td>
<td>Macro Record dialog box</td>
<td>153</td>
</tr>
<tr>
<td>149</td>
<td>Virtual Chip Functional diagram</td>
<td>154</td>
</tr>
<tr>
<td>150</td>
<td>Virtual Chip dialog box</td>
<td>154</td>
</tr>
<tr>
<td>151</td>
<td>WinSpec, WinView, or WinXTest Selection dialog box</td>
<td>181</td>
</tr>
<tr>
<td>152</td>
<td>Maintenance dialog box</td>
<td>182</td>
</tr>
<tr>
<td>153</td>
<td>Media Password dialog box</td>
<td>182</td>
</tr>
<tr>
<td>154</td>
<td>Select Components dialog box</td>
<td>182</td>
</tr>
<tr>
<td>155</td>
<td>Camera1 in Controller Type Filed</td>
<td>187</td>
</tr>
<tr>
<td>156</td>
<td>Data Overrun Due to Hardware Conflict dialog box</td>
<td>188</td>
</tr>
<tr>
<td>157</td>
<td>Hardware Wizard: Interface dialog box</td>
<td>190</td>
</tr>
<tr>
<td>158</td>
<td>RSConfig dialog box</td>
<td>190</td>
</tr>
<tr>
<td>159</td>
<td>Hardware Wizard: PVCAM dialog box</td>
<td>191</td>
</tr>
<tr>
<td>160</td>
<td>Hardware Wizard: Interface dialog box</td>
<td>191</td>
</tr>
<tr>
<td>161</td>
<td>RSConfig dialog box: Two Camera Styles</td>
<td>192</td>
</tr>
<tr>
<td>162</td>
<td>Hardware Wizard: PVCAM dialog box</td>
<td>192</td>
</tr>
<tr>
<td>163</td>
<td>RSConfig dialog box: Two Camera Styles</td>
<td>193</td>
</tr>
<tr>
<td>164</td>
<td>Error Creating Controller dialog boxes</td>
<td>194</td>
</tr>
<tr>
<td>165</td>
<td>Hardware Wizard: Detector/Camera/CCD dialog box</td>
<td>194</td>
</tr>
<tr>
<td>166</td>
<td>Program Error dialog box</td>
<td>196</td>
</tr>
<tr>
<td>167</td>
<td>Serial Violations Have Occurred dialog box</td>
<td>197</td>
</tr>
</tbody>
</table>
Tables

Table 1. PCI Driver Files and Locations ... 22
Table 2. USB Driver Files and Locations .. 23
Table 3. Cursor Appearance and Behavior for Images and Graphs 77
Table 4. Features Supported under USB 2.0 ... 185
Part 1
Getting Started

Introduction ... 13
Chapter 1, Installing and Starting WinView/32 ... 17
Chapter 2, Basic Hardware Setup ... 27
Chapter 3, Initial Data Collection ... 47
Chapter 4, Opening, Closing, and Saving Data Files 57
Chapter 5, Displaying the Data .. 63
This page intentionally left blank.
Introduction

This manual has been written to give new users a step-by-step guide to collecting, storing, and processing data from your Princeton Instruments system. The manual is divided into the following three parts:

- **Part 1. Getting Started**, is primarily intended for the first time user who is familiar with Windows-based applications or for the experienced user who wants to review. These chapters lead you through hardware setup, experiment setup, data collection, file handling, and data display procedures.

- **Part 2. Advanced Topics**, goes on to discuss ancillary topics such as cleaning, ROIs, binning, data correction techniques, post-acquisition processing, printing, pulser operation and customizing the toolbar. These chapters are more informational and less procedural than those in Part 1.

- **Part 3. Reference**, contains appendices that provide additional useful information, such as
 - commonly used system, controller type and camera type terminology provided in Appendix A and
 - data-structure information provided in Appendix B.

A software hardware setup wizard guides you through the critical hardware selections the first time you select Setup – Hardware. To properly respond to the wizard’s queries, you may have to refer to your ordering information, such as exact camera model, A/D converters, etc. Keep this information handy.

Even though the wizard will assist you in getting started, it will still be necessary to read through this manual to familiarize yourself with the many data-collection and analysis options available.

Note: Throughout the manual references are made to the PI-MAX camera/detector. This camera/detector was previously called the I-MAX and the ICCD-MAX.

Summary of Chapter Information

Part 1, Getting Started

Introduction describes the contents of this manual as well as other information sources including online Help and other documentation files.

Chapter 1 Installing and Starting WinView/32 lists system requirements and describes how to install the WinView/32 software.

Chapter 2 Basic Hardware Setup provides detailed instructions on how to configure WinView/32 for operation with the hardware (camera and controller) in your particular system. Pulser configuration is discussed in Chapter 13.
Chapter 3 Initial Data Collection provides a procedure for initial data collection, allowing users to gain some operating familiarity before going on to more complex measurements.

Chapter 4 Opening Closing and Saving Data Files describes how to open, close and save data files in WinView/32.

Chapter 5 Displaying the Data describes the data file display options.

Part 2, Advanced Topics

Chapter 6 Cleaning describes the cleaning features that are used, while data acquisition is idle, to prevent the buildup of unwanted charge on the array.

Chapter 7 ROI Definition & Binning describes how to set a region of interest (ROI), so that data is only collected from the specified portion of the CCD array. It also describes binning, the summing together of charge from several pixels, on the array or in software during data acquisition. Simple or more advanced binning options can be configured easily with WinView/32.

Chapter 8 Correction Techniques explains correction options such as background subtraction, flatfield correction, and cosmic ray artifact correction.

Chapter 9 Image Math covers WinView/32’s mathematical processing features.

Chapter 10 Post-Acquisition Processing Mask Operations discusses the several post-acquisition mask-process options provided, including Edge enhancement, Sharpening, Smoothing and the Morphological Erode and Dilation operations.

Chapter 11 Additional Post-Acquisition Processing Options discusses the additional post-acquisition processing options available, including Threshold and Clipping, Cross Sections, Binning and Skipping, and Histogram functions.

Chapter 12 Printing describes printing features of WinView/32. WinView/32 can print directly to almost any Windows printer driver.

Chapter 13 Pulser Operation describes the operation of the Pulser that can be used with WinView/32.

Chapter 14 Custom Toolbar Settings describes the Custom Toolbar and explains how to add/remove the available buttons.

Chapter 15 Software Options describes WinView/32 options that can also be purchased from Princeton Instruments.

Part 3, Reference

Appendix A System and Camera Nomenclature provides a cross-reference table for systems, controllers, and cameras/CCD arrays. It also provides brief descriptions of systems and system components. CCD array related abbreviations are also included.
Appendix B Data Structure contains descriptions of the data structure for both WinView/WinSpec 1.43 and for 1.6 (which is the same as for WinView/32 and WinSpec/32).

Appendix C CD ROM Failure Work Aroun ds provides advice on how to successfully complete the installation in situations where the CD ROM doesn’t support long file names.

Appendix D WinView/32 Repair and Maintenance provides information on how to repair, reinstall and uninstall WinView/32 components.

Appendix E USB 2.0 Limitations covers the currently known limitations associated with operating under the USB 2.0 interface.

Appendix F Troubleshooting USB 2.0 provides solutions to communication problems that may occur when operating under the USB 2.0 interface.

Appendix G Glossary includes brief definitions of terms used in relation to WinView/32 and the system hardware.

Online Help

The WINVIEW.HLP online documentation contains:

- Information that is in this manual,
- Step-by-step instructions on how to use WinView functions,
- Reference information about WinView and its functions, and
- Context-sensitive help, which describes a screen or menu item that is being pointed to or that is active when a Help button is clicked on.

Tool Tips and Status Bar Messages

Placing the mouse cursor on a button and resting it there for a few seconds causes a brief tool-tip message to appear that describes the button’s function. Tool tips are also provided for the individual panes of the Status Bar (at the bottom of the WinView/32 window). Note that tool tips only appear at the desktop level. Tool tips are not provided for the buttons on the individual dialog boxes and tab pages.

More detailed descriptions for each button at the desktop level are provided at the left side of the Status Bar. Status Bar help messages are also provided for the menu selections.

Additional Documentation

Additional documentation can be found in the \WinView32\Documentation directory on the hard drive where WinView/32 was installed. Among the files that may be in this directory are:

WINHEAD.TXT This file contains documentation on the header structure for WinSpec/32 or WinView/32 Data Files. TXT files can be opened with any ASCII text editor.
WinX_readme.doc This is a read-me file that contains the latest information on new features, fixed problems, and work-arounds for issues not yet solved.

WinX32 Automation 3.X for Visual Basic.pdf This file is stored in the directory when the Visual Basic User Interface component is selected during installation. It describes how to create your own Snap-Ins by using Visual Basic Professional Edition and the WinX32 Automation files. Requires Adobe Acrobat® Reader®.

WinX32 Programming for Macro Record.pdf This file is stored in the directory when the Macro option is installed. It provides detailed information on how to create and edit macro programs for WinView/32. Requires Adobe Acrobat Reader. The Macro option is not supplied with the standard WinView/32 program.
To ensure that the computer you have can operate the Princeton Instruments equipment, please first read the system requirements below carefully. WinView/32’s requirements differ from those of previous versions of WinView.

After confirming that your computer meets all hardware and software requirements, install WinView/32 according to the instructions in this chapter. Do not attempt to run the software until you have read Chapters 2 and 3, which discuss important hardware-setup and data acquisition issues. Also, it is recommended that you install the Princeton Instruments interface board in your computer after installing WinView/32 but before running the software. Instructions for installing the interface board are provided in your Princeton Instruments hardware manuals.

Note: If your computer and system were purchased together from Princeton Instruments, the Interface card will have been installed at the factory.

System Requirements

The following information lists the system hardware and software requirements.

Hardware Requirements

- Princeton Instruments camera and, if required by the camera, a Princeton Instruments ST series controller with either a TAXI or USB 2.0 Interface Control module for communication between controller and host computer.

- Host Computer (TAXI Protocol):
 - Minimum is AT-compatible computer with 80486 (or higher) processor (50 MHz or faster): Pentium or better recommended.
 - Princeton Instruments (RSPI) high speed PCI or Photometrics high speed PCI serial card. *Computers purchased from Princeton Instruments are shipped with the card installed.*
 - Minimum of 32 Mbyte total RAM for CCDs up to 1.4 million pixels. Collecting larger images at full frame or at high speed may require 128 Mbytes or more of RAM.
 - Hard disk with a minimum of 80 Mbytes available. A complete installation of the program files takes about 17 Mbytes, and the remainder is required for data storage. Collection of large images may require additional hard disk storage, depending on the number of images collected and their size. Disk level compression programs are not recommended.

ATTENTION Not all computers are able to satisfy the software and data-transfer performance requirements of Princeton Instruments systems. If you purchased a computer through Princeton Instruments, it will have already been tested for proper operation with a Princeton Instruments system and will have the Interface card installed.
• Super VGA monitor and graphics card supporting at least 256 colors with at least 1 Mbyte of memory. Memory required will depend on desired display resolution.

• Two-button Microsoft-compatible serial mouse or Logitech three-button serial/bus mouse.

• Host Computer (USB 2.0 Protocol):
 • AT-compatible computer with Pentium 3 or better processor that runs at 1 GHz or better.
 • Native USB 2.0 support on the motherboard or USB Interface Card (Orange Micro 70USB90011 USB2.0 PCI is recommended for desktop computers and the SIIG, Inc. USB 2.0 PC Card, Model US2246 is recommended for laptop computers).
 • Minimum of 256 Mb of RAM.
 • CD-ROM drive.
 • Hard disk with a minimum of 80 Mbytes available. A complete installation of the program files takes about 17 Mbytes and the remainder is required for data storage, depending on the number and size of images collected. Disk level compression programs are not recommended.
 • Super VGA monitor and graphics card supporting at least 256 colors with at least 1 Mbyte of memory. Memory requirement is dependent on desired display resolution.
 • Two-button Microsoft compatible serial mouse or Logitech three-button serial/bus mouse.

Operating System Requirements

TAXI Protocol: Windows® 95, Windows® 98SE, Windows® ME, Windows NT® (ver. 4.0 or higher), Windows® 2000, or Windows® XP operating system. WinView/32 is **not** supported under OS/2. Nor will it run under Windows 3.1 or 3.11.

USB 2 Protocol: Windows 2000 (with Service Pack 4), Windows XP (with Service Pack 1) or later operating system.
Your System Components

Take a few minutes and enter the information in the table below. Various pieces of this information will be required when you install WinView/32, when the Setup Wizard (see Camera Detection wizard or Hardware Setup wizard, pages 29 or 33 respectively) runs, and when you begin entering component information on the dialog boxes and tab pages associated with Hardware Setup and Pulser Setup. Other information such as software version and hardware serial numbers may be useful if you ever need to contact Customer Support.

<table>
<thead>
<tr>
<th>System Component</th>
<th>Your System</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Software and Version</td>
<td>WinView Version 2.5.____</td>
<td>Found on the installation CD or via the WinView Help menu.</td>
</tr>
<tr>
<td>Software Options</td>
<td></td>
<td>Options (purchased separately from WinView) such as Macro Record or Virtual Chip.</td>
</tr>
<tr>
<td>PVCAM® Driver</td>
<td>Yes / No</td>
<td>PVCAM driver is used to run Photometrics cameras, PhotonMax, Princeton Instruments cameras with USB 2, and the Acton InSpectrum™.</td>
</tr>
<tr>
<td>Interface Card</td>
<td>Princeton Instruments PCI, Tucson PCI, USB 2.0</td>
<td>Many systems use the Princeton Instruments PCI. Tucson PCI is required for Photometrics cameras and PhotonMax. USB 2 is available for newer Princeton Instruments systems.</td>
</tr>
<tr>
<td>System Name</td>
<td></td>
<td>Refer to your order and Appendix A</td>
</tr>
<tr>
<td>Controller</td>
<td>PentaMAX, ST-121, ST-133, ST-133-2MHz, ST-133-5MHz, ST-138, ______________</td>
<td>Refer to your order and Appendix A</td>
</tr>
<tr>
<td>Controller Serial Number</td>
<td></td>
<td>Refer to the serial label. Typically, this is located on the bottom of the unit.</td>
</tr>
<tr>
<td>Detector/Camera and CCD Array</td>
<td></td>
<td>Refer to your order and Appendix A</td>
</tr>
<tr>
<td>Detector/Camera Serial Number</td>
<td></td>
<td>Refer to the serial label. Typically, this is located on the back of the unit.</td>
</tr>
<tr>
<td>System Component</td>
<td>Your System</td>
<td>Notes</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Shutter Type</td>
<td>Small (≤ 25 mm), Large (≥ 35 mm), None</td>
<td></td>
</tr>
<tr>
<td>Pulser Type</td>
<td>DG535, PG200, or PTG</td>
<td>PTG is usually associated with the PI-MAX camera</td>
</tr>
<tr>
<td>Pulser Serial Number</td>
<td></td>
<td>Refer to serial label, typically located on the back of the unit and in the lower left corner.</td>
</tr>
</tbody>
</table>

Installing WinView/32

Caution Because WinSpec/32 and WinView/32 contain files with the same name but different content, do not install WinSpec/32 and WinView/32 software in the same directory.

Before installing WinView/32:

- Verify that your computer meets the requirements listed on pages 17-18.
- Check to see if the interface card has been installed. Note that the interface card is not necessary if the computer will only be used for post-processing data. If you plan to collect data and the card is not installed in your computer, you will need to install it and add the hardware after WinView/32 is installed.
- If installing under Windows NT, 2000, or XP, make sure that you are logged on as administrator of the Workstation. Otherwise, the installation will fail because changes cannot be made to the Windows Registry.
- Check to see if WinSpec/32 has been installed on your system. If it has, note the directory name so you won’t accidentally install WinView/32 in the same directory.
- Determine how you will be installing the software. WinView/32 is provided on a CD shipped with the system or it can be installed from the Princeton Instruments FTP site.

During the installation process, you will be given the choice of **AUTO PCI** or **Custom** installation.

AUTO PCI: Installs the WinView/32 application and DLLs, the help files, the INF file (if required) and the interface drivers, sample data, diagnostic programs, Acton spectrograph support, pulser support, ASCII and Move Snap-Ins, PI Screen Saver, PI SPE Shell Extension, Visual Basic Interface, and the Imaging option.

Custom: By default, installs the WinView/32 application and DLLs, the help files, sample data, PI Screen Saver, and the PI SPE Shell Extension. However, you can change the components for installation by checking and unchecking the boxes associated with the components.

Installing from the CD

1. Exit any software currently running. This will speed the installation of WinView/32.
2. Insert the WinView/32 CD into your CD drive. Windows will detect the CD drive and the installation will begin automatically.
Chapter 1 Installing and Starting WinView/32

Note: If the auto-start feature has been disabled on your computer, click the desktop Start button, select Run, key x:\Setup (where “x” is the letter designating your CD drive) and press the Enter key on your keyboard. The install sequence will begin.

Caution

If your CD drive doesn’t support the Windows long filenames, attempting the installation causes the filenames to be truncated and the installation fails, generating an error message like:

An error occurred during the move data process: -113
Component: Application\WinXSystem
File Group: WinXSystem

If this should happen, see Appendix C for workarounds.

3. Click on the program that you want to install. If you have clicked on "Install WinSpec/32 or WinView/32” you will be given additional choices on the next dialog box.

4. After selecting the program, follow the instructions provided on the dialog boxes and continue with the installation process. You can abort the installation at any time by clicking on Cancel and following the instructions.

Installing from the FTP Site

If you aren’t sure how to access the FTP site, contact Princeton Instruments’ Customer Support Department for assistance. Contact information follows.

Princeton Instruments
3660 Quakerbridge Road
Trenton, NJ 08619 (USA)
Tel: 800-874-9789/609-587-9797
Fax: 609-587-1970
Customer Support E-mail: techsupport@piacton.com

For customer support and service outside the United States, see our web page at www.piacton.com. An up-to-date list of addresses, telephone numbers, and e-mail addresses of Roper Scientific's overseas offices and representatives is maintained on the web page.

1. Log onto the FTP site and go to the Software/Official/Current directory.

2. Execute the program WinView.exe and follow the instructions on your screen. You can abort the installation at any time by clicking on Cancel and following the instructions.

Custom Installation Choices

Application Files: Loads the actual WinView/32 files.

Help Files: Loads the Help System, both general and context-sensitive Help.

PCI Interface: Loads the drivers for the PCI Interface card.

Sample SPE Data Files: Creates a directory Data containing sample *.SPE files. This directory is located beneath the one containing the WinView/32 files.

Diagnostic Program: Loads the diagnostics program pidiag32.exe. It is located in the directory containing the WinView/32 application files and can be executed by double-clicking on pidiag32.exe via the Windows Explorer.
Pulser Support: Loads the pulser drivers. Currently supported pulsers include the PTG, the PG200, and the DG535 Timing Generator (drives the PI-MAX pulsing circuits).

Snap-Ins: Loads the selected Snap-In files. When a Snap-In is installed, its button will be added to the Snap-In toolbar.

PI Screen Saver: Loads the PI Screen Saver.

PI Shell Extension: Provides additional SPE file properties pages. Right-click on SPE file name and select Properties. With PI Shell Extension deselected, only the standard Windows'95 file property page will appear. With PI Shell Extension selected, additional property pages will appear.

Visual Basic User Interface: Allows DLLs programmed using Visual Basic 5 or higher to be executed from WinView/32.

Options: Allows you to install or uninstall the Imaging option.

Installing the PCI Card Driver

Administrator privileges are required under Windows NT, 2000, and XP to install software and hardware.

Before installing the Princeton Instruments (RSPI) high speed PCI card in your computer, turn the computer off. Follow the instructions supplied with your computer for installing an internal card and install the PCI card. After you have secured the card in the computer and replaced the cover, turn the computer on. When Windows boots, it will try to install the new hardware. If it cannot locate the driver, you will be prompted to enter the directory path, either by keyboard entry or by using the browse function.

If you selected AUTO PCI, WinView/32 automatically put the required INF file into the Windows/INF directory and put the PCI card driver file in the Windows/System32/Drivers directory.

<table>
<thead>
<tr>
<th>Windows Version</th>
<th>PCI INF Filename Located in "Windows"/INF directory*</th>
<th>PCI Device Driver Name Located in "Windows"/System32/Drivers directory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows 2000 and XP</td>
<td>rspi.inf (in WINNT/INF, for example)</td>
<td>rspici.sys (in WINNT/System32/Drivers, for example)</td>
</tr>
<tr>
<td>Windows NT</td>
<td>N/A</td>
<td>pi_pci.sys</td>
</tr>
<tr>
<td>Windows 95, 98 and Windows ME</td>
<td>pii.inf</td>
<td>pivxdpci.vxd</td>
</tr>
</tbody>
</table>

* The INF directory may be hidden.

Table 1. PCI Driver Files and Locations
Installing the USB 2.0 Card Driver

Administrator privileges are required under Windows NT, 2000, and XP to install software and hardware.

Before installing the Princeton Instruments USB2 Interface, we recommend that you defragment the host computer's hard disk. This operation reduces the time the computer spends locating files. Typically, the "defrag" utility "Disk Defragmenter" can be accessed from the Windows® Start menu and can usually accessed from the Programs/Accessories/System Tools subdirectory.

After defragmenting the hard disk, turn off the computer and make the USB cable connections between the host computer and the ST-133. Then, turn the ST-133 on before turning on the host computer.

At bootup, Windows will detect the Princeton Instruments USB2 Interface hardware (i.e., the USB 2.0 Interface Control module). You may be prompted to enter the directory path(s) for the apausbprop.dll and/or the apausb.sys file(s), either by keyboard entry or by using the browse function.

If you selected AUTO PCI during the application software installation, WinView automatically put the required INF, DLL, and USB driver file in the "Windows" directories shown below. Refer to the Table 2 below for the file locations.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows® 2000 and XP</td>
<td>rsusb2k.inf (in WINNT/INF, for example)</td>
<td>apausbprop.dll (in WINNT/System32, for example)</td>
<td>apausb.sys (in WINNT/System32/Drivers, for example)</td>
</tr>
</tbody>
</table>

* The INF directory may be hidden.

Table 2. USB Driver Files and Locations

WinView Version 2.5.19.6 and later

The PVCAM.INI file required by a PVCAM-supported camera (i.e., Princeton Instruments camera with USB 2.0 interface, a PhotonMAX, a Photometrics camera, or an Acton InSpectrum) will automatically be created when the Camera Detection Wizard runs. One of the things this file contains is the default name for the camera (typically "Camera1") that is displayed on the Hardware Setup|Controller/Camera tab page. Because this name is not particularly descriptive, you may want to change it by editing the PVCAM.INI file: editing instructions are provided in "Camera1 (or similar name) on Hardware Setup dialog box", on page 187.
WinView Versions before 2.5.19.6: Run RSConfig.exe

After the drivers have been installed, you will need to create a PVCAM.INI file. This step is required because cameras using the USB 2.0 interface are considered PVCAM® cameras.

1. Make sure the ST-133 or the camera (if it has an internal controller) is connected to the host computer and that it is turned on.

2. Run RSConfig from the Windows|Start|Programs|Roper Scientific menu or from the directory where you installed WinView.

3. When the RSConfig dialog box (Figure 1) appears, you can change the camera name to one that is more specific or you can keep the default name "Camera1". When you have finished, click on the Done button.

Note: If the first camera in the list is not the "Princeton Style (USB2)". you will need to edit the PVCAM.INI file created by RSConfig. See the instructions in "Demo, High Speed PCI, and PCI(Timer) are Choices on Hardware Wizard:Interface dialog", page 191.

![Figure 1. RSConfig dialog box](image)

Changing Installed Components, Repairing, or Uninstalling/Reinstalling WinView/32

Refer to Appendix D.

Starting WinView/32

Before starting WinView/32, follow the hardware interconnection and power up instructions in the hardware manuals supplied with your system. Then, open the Windows Program manager and start WinView/32 by clicking on WinView32 in the Roper Scientific folder (see Figure 2).
Note: You can start WinView/32 even if you have not installed the interface card or if you have not turned on the controller. If there is no interface card, WinView/32 will run in "Demo" mode. This mode allows you to look at and post-process previously stored data (such as the sample data installed with the software) and to become familiar with experiment setup and data acquisition. Some features will not be available because the program looks for information from the controller and camera while WinView/32 is loading and initializing.

WinView/32 follows the Windows 95 graphical interface conventions. While the software is booting, a splash screen such as the one shown in Figure 3 is displayed until the software has finished loading and initializing. Then, the Main Menu appears as shown in Figure 4. From there, you can access the program’s functions through menu selection.

Note: If this is the first time you have installed and launched WinView/32, the Camera Detection Wizard (or the Hardware Wizard for older versions of the software) will pop up. This wizard allows you to specify the camera system and load the default hardware settings before you can access the menu. See Chapter 2, page 29 for more information about the Camera Detection Wizard and page 33 for information about the Hardware Wizard.
Values, labels, and alphanumeric data are usually entered from the keyboard. Selections and screen control operations are usually done using a mouse or other graphical I/O device, although keyboard selection shortcuts are provided. Mouse selection is typically done by positioning the mouse cursor on the selection item and clicking the left mouse button. In some cases, clicking the right mouse button will bring up a dialog box with additional information or a special menu that allows additional operations to be performed.
Chapter 2

Basic Hardware Setup

Introduction

This chapter provides an overview of the relationships between the camera, the controller, and the host computer. This overview is followed by a discussion of the Setup Wizard that runs the first time you select Hardware from the Setup menu (Figure 5). The remainder of the chapter presents the Hardware Setup tab pages so you will be able to make the appropriate selections and entries for your system.

The chapters that follow describe how to configure a pulser, set up experiment parameters, and control array temperature. Initial data acquisition is discussed in Chapter 3.

Advanced functions such as Post-Processing, Custom Chip, and Custom Timing are discussed in Part 2 of this manual.

Basic Hardware Overview

The basic components of a Princeton Instruments system are: a camera (or detector), a controller, interconnecting cables, a computer interface card, and the application software (in this case WinView/32).

Note that other components such as a computer, coolant circulator, and pulser can also be ordered.

The interface card, installed in the host computer, permits communication between the host computer and the controller (often an ST-133).

The controller accepts input from the host computer and WinView/32 and converts it to the appropriate control signals for the camera. These signals allow you to specify the readout rate, binning parameters, regions of interest, gain, and array temperature. After data is acquired in the camera, it is transmitted to the controller where it is processed, transmitted to the host computer, displayed in the WinView/32 window, and can be stored to disk.
Figure 6 illustrates possible system configurations (pulsers are not shown). Figure 7 shows the interconnections for an air-cooled Princeton Instruments camera with an internal controller. Figure 8 and Figure 9 show the interconnections for a Princeton Instruments system with an external controller, as well as interconnections to an optional coolant circulator, and an optional shutter.

Figure 6. Possible System Configurations

Figure 7. Air-Cooled System (with Internal Controller) Diagram
Entering the Default Camera System Parameters into WinView

Camera Detection Wizard (WinView Versions 2.5.19.6 and later)

If your software version is earlier than 2.5.19.6, go to the next topic for a description of the Hardware Setup Wizard used in earlier versions of the WinView software.

Version 2.5.19.6 of the WinView introduced enhancements to the former Hardware Setup Wizard. Now called the Camera Detection Wizard, this function is used to load the WinView hardware setup parameter fields with default values for a WinView-compatible camera system. The Camera Detection Wizard runs automatically the first time you install WinView and can be launched at a later date if you decide to control a different WinView-compatible camera. The autodetection function can be used for both PVCAM-based camera systems (USB 1 interface, USB 2 interface, Photometrics PCI, PhotonMAX) and Princeton Instruments PCI (TAXI) interface-based systems.

To Use the Autodetection Function:

1. Make sure the camera system is connected to the host computer and that it is turned on.
2. Run WinView. The Camera Detection Wizard will automatically run if this is the first time you have installed a Princeton Instruments WinX application (WinView/32,
WinSpec/32, or WinXTest/32) and a supported camera. Otherwise, if you installing a new camera type, click on the Launch Camera Detection Wizard… button on the Controller/CCD tab page to start the wizard.

3. On the Welcome dialog (Figure 10), leave the checkbox unselected and click on Next.

![Figure 10. Camera Detection Wizard - Welcome dialog box](image)

4. Select the system that you want to install.
 - If there are two camera systems connected to the host computer and turned on, the wizard table should contain two listings.
 - If there are no systems listed, click on Back, check the cable connections and/or turn on the camera system, and then click on Next.

![Figure 11. Camera Detection Wizard - Detected Hardware dialog box](image)

5. Follow the instructions on the dialog boxes to perform the initial hardware setup: this wizard enters default parameters on the Hardware Setup dialog box tab pages and gives you an opportunity to acquire a test image to confirm the system is working.
To Use the Manual Function:

Note: This function can only be used to install Princeton Instruments PCI (TAXI) interface-based systems (both Princeton Instruments PCI (TAXI) and PVCAM-supported systems can be installed by using the autodetection function previously described). The manual function is very similar to the Hardware Detection Wizard, but you are not given the opportunity to install a PVCAM-based camera. In addition, unless you want to acquire the optional test image, this function does not require that the system be turned on.

1. Run WinView. The **Camera Detection Wizard** will automatically run if this is the first time you have installed a Princeton Instruments WinX application (WinView/32, WinSpec/32, or WinXTest/32) and a supported camera. Otherwise, if you installing a new camera type, click on the **Launch Camera Detection Wizard…** button on the **Controller/CCD** tab page to start the wizard.

2. On the **Welcome** dialog (Figure 12), select the checkbox and click on **Next**.

3. In most cases you will not be getting a New System Configuration Disk with your system. Therefore, the default selection is “**NO**”. If you do have such a disk, you would select “**YES**” and follow the directions for loading the information from that disk. Click on **NEXT** and follow the directions on the subsequent dialog boxes for selecting the interface, controller, and detector/camera.

Figure 12. Camera Detection Wizard - Welcome (Manual selected) dialog box
4. When you have finished with these selections, you will see the **Test Image** dialog box (Figure 14). The default selection is "**No**". If you select "**Yes**", you must make sure that the system is connected to the host computer and that the camera system is turned **ON** before you click on the **Next** button.

5. Depending on your radio button selection, the following will happen
 - "**No**": Clicking on the **Next** button will load the camera/controller default parameters into WinView and pop up the **Finished** dialog box.
 - "**Yes**": Assuming that the camera system is connected to the host computer and turned on, clicking on the **Next** button will acquire a single frame of data (using a 100 msec exposure time), load the camera/controller default parameters into WinView, and pop up the **Finished** dialog box.

6. Click on **Finish** to complete the camera installation.
Hardware Setup Wizard (WinView Versions 2.5.19.0 and earlier)

If your software version is 2.5.19.6 or later, go back to the previous topic for a description of the Camera Detection Wizard used in those versions of the WinView software.

The Setup Wizard runs the first time you select Setup|Hardware after WinView/32 has been installed on the host computer for the first time or when you are setting up a new controller for running in multi-controller mode. If a PIHWDEF.INI file has been copied to your WinView/32 directory, the selections specified in the PIHWDEF.INI will be implemented for the first controller and the Setup Wizard is not necessary.

The wizard leads you through the initial selection of interface, controller type, and Detector/Camera/CCD type. Once you have finished entering information through the wizard, it exits to the Hardware Setup dialog box, where you can make the remaining selections and review those made using the wizard.

The text that follows includes pictures of the dialog boxes you may see and background information about Non-Volatile RAM (NVRAM), interface cards, controllers, and default selections. Wherever possible, the text follows the order in which the dialog boxes will appear.

Note: This procedure assumes that for a PVCAM-supported camera (USB1 interface, USB 2.0 interface, PhotonMAX, or Acton InSpectrum), you have already run the RSConfig.exe program (see "WinView Versions before 2.5.19.6: Run RSConfig.exe", page 24).
1. **Optional Disk**
In most cases you will not be getting a New System Configuration Disk with your system. Therefore, the default selection is "NO". If you do have such a disk, you would select "YES" and follow the directions for loading the information from that disk.

![Optional Configuration Disk dialog box](image1.png)

Figure 16. Optional Configuration Disk dialog box

2. **PVCAM® Supported Camera Yes/No Selection**
WinView/32 supports Princeton Instruments and Photometrics cameras as well as the Acton InSpectrum™. The choice of "Yes" or "No" determines the sequence of Hardware Wizard dialogs.

"No" is the default selection. With the exception of the PhotonMAX, this is the appropriate choice if you have a Princeton Instruments camera that uses the TAXI protocol (PCI interface). After you click on **Next**, the wizard looks for a compatible Princeton Instruments (RSPI) PCI card and opens the **Interface** dialog box. "Yes" is the appropriate choice if you have a PhotonMAX, a Photometrics camera, or an Acton InSpectrum or if the Princeton Instruments camera communication interface is USB 2.0. After you click on **Next**, the wizard will "create the PVCAM controller" and will open the **Controller Type** dialog box.

![PVCAM dialog box](image2.png)

Figure 17. PVCAM dialog box

3. **Interface Selection**
This dialog is skipped if you have a PVCAM-supported camera.

If you are using a Princeton Instruments camera with TAXI protocol and a compatible Princeton Instruments (RSPI) PCI card is found, the choices will be PCI Timer, High Speed PCI, and Demo. The

![Interface dialog box](image3.png)

Figure 18. Interface dialog box
default will be "PCI Timer" data transfer mode in which data transfer is controlled by a polling timer. "High Speed PCI" is a data transfer mode in which data transfer is interrupt driven. "Demo" provides limited access to WinView functions and allows you to display previously acquired data and to use post-processing techniques to analyze it.

After you have selected the interface, click on **Next**, to open the **Controller Type** dialog box.

4. Controller Selection

Note: The **Controller Type** for PVCAM-supported cameras is automatically determined from the entry in the PVCAM.INI file.

For Princeton Instruments cameras using the TAXI (PCI) interface (with the exception of the PhotonMAX), the wizard checks to see if NVRAM is installed in the controller or camera. NVRAM contains detailed information about your system's controller and camera. Note that some controllers and cameras do not contain NVRAM so you will have to select the appropriate entries. See Appendix A for a cross-reference table for systems, controllers, and CCD arrays.

If the wizard finds NVRAM, the wizard reads the controller and camera information and inserts that information into the Controller Type and Detector/Camera/CCD dialog boxes. If it does not find NVRAM, it enters "ST-133" as the default controller. If you have an ST-121, ST-130, or ST-138 controller, you will have to select it from the dropdown list.

The **Controller Type** selection is critical because it determines the nature and type of the other selections that will be available, including the camera type, display orientation options, cleans & skips, and user defined chip parameters. No single controller provides all possible selections, and only the ones applicable to the selected controller are listed on the Hardware Setup dialog box tab pages.

5. Detector/Camera/CCD Selection

Note: The **Detector/Camera/CCD** for a PVCAM-supported camera is automatically determined from the camera entry in the PVCAM.INI file.

The **Detector/Camera/CCD** dialog is displayed after you select the controller type. Only the detector, camera, or CCD types associated with
the selected controller will be available for selection. If your system has NVRAM, the correct selection will be automatically made. Otherwise, you will need to choose from the list. After you click on Finish, the Hardware Setup dialog box will be displayed so you can begin entering other hardware information.
Entering Controller and Detector Characteristics

The Controller/Detector tab page (may also be named Controller/Camera or Controller/CCD depending on the hardware selections) is used to enter and update Controller Type, Detector (Camera or CCD, depending on the system) Type and some of the Controller/ Detector type parameters, such as Shutter Type and Readout Mode. The Controller and Detector Type selections are perhaps the most fundamental and important of all hardware selection decisions and directly influence the appearance of many other WinView/32 screens and the selections provided on them. As a result, setting up the software for use in any system should always begin with the Controller selection.

Figure 21 shows all of the fields and check boxes that exist on the Controller/Detector tab page. WinView/32 will display and hide features based on the controller, camera, and readout mode selected. All of the features are described in the text that follows.

Use PVCAM: (Versions 2.5.19.0 and earlier) This box will only appear if you have an installed Tucson PCI interface card, have a PhotonMAX or have an installed USB 2.0 interface for a Princeton Instruments detector or the Acton Research InSpectrum. This box is automatically checked when you indicate during installation that you are using a PVCAM-supported camera.

Note: When you change the check status of this box, a warning message "Changing This Value Will Cause All Current Controllers To Be Destroyed! Do You Want To Continue?" appears. This message means that the current Hardware settings will be deleted and the Hardware Wizard will be displayed so you can characterize the new controller and camera.

Controller Number: (Versions 2.5.19.0 and earlier) This field will only appear if you have more than one Princeton Instruments brand PCI interface card installed. If you have a controller connected to each PCI card, you would select the number of the controller that you want to use.
Controller Type: The currently selected Controller Type is displayed in this field. If you change the controller that is being used in the system, choose the correct controller name from the selection list (displayed by clicking on the button at the end of the field). Appendix A provides a cross-reference table for systems, controllers, and CCD arrays.

Note: After you have selected the Controller Type, you can load the default settings for your controller, camera, and CCD array by clicking on Load Defaults From Controller, if this button is present.

Controller Version: In the case of the ST-133 and PentaMAX controllers, different versions have been released having different capabilities. The available software selections will correctly reflect these differences when the proper version number is specified in this box.

Camera Type: The selected Camera (Detector/CCD) Type is displayed in this field. Clicking on the button at the end of the box drops the selection list so that the selected type can be changed if necessary. Note that the listed camera types depend on the controller selection, requiring that the controller type be specified first.

Shutter Type: There are six selections.

- **None:** If the camera has no shutter (frame-transfer or interline CCD array) and is not an Intensified camera, select None.
- **Small:** A small shutter is one that is typically 25 mm or smaller in diameter. This setting represents a shutter compensation time of approximately 8 msec.
- **Large:** A large shutter is one that is typically 35 mm and larger. In the case of a camera having a very large CCD, such as the Kodak 2k × 2k, a large shutter may have been installed. This setting represents a shutter compensation time of approximately 28 msec.
- **Remote:** Remote is primarily intended for spectroscopy applications where an external shutter would be placed ahead of the entrance slit.
- **Electronic:** Electronic only applies to operation with an intensified camera, which would normally not be equipped with a mechanical shutter. This selection would apply to both the Gate and Shutter/CW modes of the IIC-100, IIC-200, IIC-300, MCP-100, and PI-MAX.
- **Custom:** This shutter type is automatically selected if you are using a PVCAM-supported camera. When Custom is the shutter type, you will be able to enter the shutter close compensation time in the field below the shutter type. Shutter close compensation time delays readout to allow time for the shutter to fully close. The close value will vary depending on the camera and the shutter used.

Shutter Open Compensation Time: Delays the exposure until the shutter is fully open. The open delay value will vary depending on the camera and the shutter used.

Readout Mode: The readout mode is determined by the characteristics of the CCD array and the controller. The possible choices are:

- **Full Frame:** The entire chip can be read out.
- **Frame Transfer:** Only the unmasked area of the chip can be read out. Frame transfer is only available if the camera has a frame-transfer chip such as the EEV 512 × 1024.
Interline: Provides 100% duty cycle operation. Interline is only available with a camera having an interline chip such as the PI 1300 × 1030.

Kinetics: Kinetics is a special type of operation in which most of the CCD is mechanically or optically masked, leaving a small section open to light. This section is then read out very quickly. See the System or Controller manual for more details on the CCD aspects of this readout mode.

DIF: (MicroMAX Interline only) Dual Image Feature (DIF) is a special feature that allows images to be taken in pairs with very short exposure times (as small as 1µs). This feature is only available for factory modified MicroMAX controller/Interline camera systems. Operating in this readout mode provides three timing modes unique to DIF systems: IEC (Internal Exposure Control), EEC (External Exposure Control) and ESABI (Electronic Shutter Active Between Images). These modes are in addition to Free Run mode.

Vertical Shift Time: This information appears for the Frame Transfer and Kinetics modes. Reports the speed (in microseconds) at which a single row will be shifted vertically. This information is based on the value in the Vertical Shift box. The higher the value in that box, the longer the vertical shift time.

Note: If you are using a PVCAM-supported camera, the Vertical Shift rate is expressed in nsec/row. Use the up/down arrows to change the Vertical Shift rate.

Vertical Shift: Determines the speed of the image transfer from the exposed area of a frame-transfer chip to the masked area. Also sets the speed of image transfer when operating in the Kinetics mode. Setting a lower value increases the shift speed. A higher value gives a slower shift. If the shift is too fast, not all of the charge will be transferred. If too slow, image smearing will be increased due to the exposure that takes place while the transfer is in progress. The default value gives good results in most measurements.

Note: If you are using a PVCAM-supported camera, this parameter is hidden because the shift time is being adjusted via the Vertical Shift (nsec/row) up/down arrows.

Window Size: Determines the height of the window for Kinetics mode. The window size must be at least 1 row and less than or equal to the maximum number of rows for the array.

MPP: This check box may appear if the CCD array is designed for MPP (multi-pinned-phase) operation. When this box is checked, the array will be run in MPP mode. Some MPP-capable arrays can also be run in Non-MPP mode (MPP box is unchecked). Running in Non-MPP mode may result in higher dark current in addition to larger full well capacity.

Note: MPP capability reduces the rate of dark-current generation by a factor of 20 or more, and thus relaxes CCD cooling requirements to the level where a thermoelectric cooler is sufficient for most applications.
LOGIC OUT Output: The choices for the signal provided at the controller's SCAN Output connector vary based on the selected Controller. If the LOGIC OUT field doesn't appear on the tab page, the choice of output may be done via an internal jumper (for information on how to set the jumper, contact factory Tech Support). Depending on your system, the following choices may appear in the drop down list:

Cleaning: This signal is high when an array Clean cycle is in progress and otherwise low.

Logic 0: Establishes a TTL logic 0 at the Logic Out connector.

Logic 1: Establishes a TTL logic 1 at the Logic Out connector.

Note: LOGIC 0 and LOGIC 1 can be used to control an external device using the application software.

Not FT Image Shift: This signal is low when a frame-transfer shift is in progress and otherwise high.

Not Ready: After a Start Acquisition command, this output changes state on completion of the array cleaning cycles that precede the first exposure. Initially high, it goes low to mark the beginning of the first exposure. In free run operation it remains low until the system is halted. If a specific number of frames have been programmed, it remains low until all have been taken, then returns high.

Not Scan: Reports when the controller is finished reading out the CCD array. NOTSCAN is high when the CCD array is not being scanned, then drops low when readout begins, returning to high when the process is finished.

Shutter: This signal is low when the shutter is closed and goes high when the shutter is activated, dropping low again after the shutter closes. In Gated operation, SHUTTER is the correct choice and the signal should be applied to the inhibit input of the pulser to prevent pulsing during readout.

Shutter Comp Time Pre: Delays the acquisition until the shutter (if present) is fully open. The setting range is 0 to 30 ms. For single-strip spectroscopic measurements, a setting of “0” is recommended.

RS170 Type: Selections are NTSC (US video standard) and PAL (European).

Show Custom Chip: Advanced feature. See Custom Chip discussion on page 151.

Anti-Blooming: (THM 1024x1024FT CCD array) Checking this box activates this CCD array's anti-blooming feature.

Load Defaults From Controller: Pops up the Load Factory Defaults From NVRAM dialog box so you can repopulate the fields and selections with the values stored in the controller's non-volatile RAM.

Launch Camera Detection Wizard: Pops up the Camera Detection Wizard - Welcome dialog box so you can set up a new camera system or switch the active camera system to another camera system already connected to the host computer.
Entering the Data Orientation

With the exception of the ST-121, the Display tab page is the same for all controllers. Three display options, Rotate, Reverse and Flip, are provided. This feature allows you to compensate for CCD array or camera orientation. Before and after thumbnail illustrations show the effect of each selection. If no option is selected, the thumbnails will be the same. Any orientation can be achieved with the proper combination of Rotate, Reverse, and Flip. In the case of the ST-121, only Reverse is provided.

Rotate: Rotates the image 90° counterclockwise.

Reverse: Reverses the image horizontally.

Flip: Flips the image vertically.

![Display tab page; left graphic applies to all controllers except ST-121; right graphic applies to ST-121 only](image)
Entering the Interface Communication Parameters

The **Interface** tab page allows you to specify the interface card installed in your computer and to enter the I/O addresses (if required). This functionality is particularly useful if you have multiple PCI cards installed in the host computer. Figure 23 shows all of the fields and check boxes that exist on the **Interface** tab page. WinView/32 will display and hide features based on the interface card installed in the host computer. All of the features are described in the text that follows.

Type: Select the communications type that will be used to transmit data from the controller to the computer. All communications types are not available for all controllers and computers. The “Demo” selection, which allows the software to be exercised but which does not support data transfer to the computer, would not ordinarily be used in the field.

High Speed PCI: Select if a Princeton Instruments (RSPI) high speed PCI card is installed in your computer and you want data transfer to be interrupt driven. This choice would give the highest performance in most situations.

PCI Timer: Allows data transfer to be controlled by a polling timer if a Princeton Instruments (RSPI) high speed PCI card installed. Useful for troubleshooting possible interrupt problems (computer crashes or system fails to return data). Note that data transfer is slower in PCI Timer mode and data overrun more likely. Also PCI Timer cannot be used to continuously acquire small Regions of Interest in Safe Mode timing operation. PCI Timer is not compatible with **Use Interrupts** operation, a timing mode available when using the ST-138 Controller.

Demo: Allows the software to be exercised without being connected to a controller. This mode is used primarily for demonstration purposes or post-processing of acquired data and cannot be used in an actual measurement.

Interrupt Level: The interrupt level for a PCI card is reported but cannot be changed.

Card Number: This field only appears if more than one PCI card has been detected in your computer. This field allows you to set up the communications parameters so each card is uniquely addressed.

I/O Address: The I/O Address for a PCI card is reported but cannot be changed.

I/O Address 2 and 3: (High Speed PCI only) These addresses are reported but cannot be changed; address selection is automatic and under computer control. With other interfaces, these addresses are not displayed.
Chapter 2 Basic Hardware Setup

Entering the Cleans/Skips Characteristics

Caution

For most applications, the default settings will give the best results. We advise contacting the factory for guidance before changing these parameters from their default values.

Exception: With a PI-MAX camera, we suggest settings of Cleans 1 and Strips per Clean 4, Minimum Block Size 16 and Number of Blocks 32.

The Cleans/Skips tab page allows you to change the clean and skip parameters from their default values or to reload the default values. Figure 24 shows all of the fields and check boxes that exist on the Cleans/Skips tab page. WinView/32 will display and hide features based on the controller version. All of the features shown are described in the text that follows. Refer to Chapter 6, "Cleaning" for additional information.

Load Default Values: Reloads the factory defaults from the NVRAM.

Cleans

Cleans are applied to the entire CCD array and remove charge that has accumulated on the array while waiting for data acquisition to begin. The charge on the CCD chip is transferred to the shift register and discarded to prevent charge buildup from occurring. On completion of a setup, successive clean cycles occur normally. The Number of Cleans and Number of Strips per Clean parameters allow you to program additional clean cycles that will be performed after initiating the run but before any data is taken.

Number of Cleans: For most applications the default value should be used. Clicking on the Load Default Values button and then selecting Yes will install the default value. Values other than the default can be directly entered in the field or selected via the spin buttons.

Number of Strips per Clean: Sets the number of CCD data strips to be transferred and discarded during each clean. The maximum valid setting is limited by the chip size. The default value will generally give good results.

Clean Mode: (Photometrics cameras) Sets when and how charge will be cleared from the array while the camera is waiting to acquire data. Clearing removes charge from the CCD by clocking the charge to the serial register then directly to ground. This process is much faster than a readout, because the charge does not go through the readout node or the amplifier. Note that not all clearing modes are available for all cameras. Be sure to check availability of a mode before attempting to set it.

Clear Never: Don't ever clear the CCD. Useful for performing a readout after an exposure has been aborted.
Clear Pre-Exposure: Before each exposure, clears the CCD the number of times specified by the Number of Cleans entry. This mode can be used in a sequence. It is most useful when there is a considerable amount of time between exposures.

Clear Pre-Sequence: Before each sequence, clears the CCD the number of times specified by the Number of Cleans entry. If no sequence is set up, this mode behaves as if the sequence has one exposure. The result is the same as using Clear Pre-Exposure.

Clear Post-Sequence: Clears continuously after the sequence ends. The camera continues clearing until a new exposure is set up or started, the abort command is sent, the speed entry number is changed, or the camera is reset.

Clear Pre/Post-Sequence: Clears Number of Cleans times before each sequence and clears continuously after the sequence ends. The camera continues clearing until a new exposure is set up or started, the abort command is sent, the speed entry number is changed, or the camera is reset.

Clear Pre-Exposure Post-Sequence: Clears Number of Cleans times before each exposure and clears continuously after the sequence ends. The camera continues clearing until a new exposure is set up or started, the abort command is sent, the speed entry number is changed, or the camera is reset.

Use Continuous Cleans Instruction: This feature is supported by Version 5 (and higher) ST-133 controllers and will only appear if the detector/camera also supports this feature. Continuous cleans instruction does horizontal shifts while doing vertical shifts for a faster continuous clean. Check this box if you want to apply the continuous cleans instruction to the continuous cleans function available when External Sync timing mode (Experiment Setup|Timing tab page) is being used to acquire data. *With this instruction, the delay between an External Sync trigger and the start of exposure is minimized.* Refer to Chapter 6, “Cleaning” for more information about continuous cleans and continuous cleans instruction.

Note: Older versions of the ST-133 controllers, as well as other controller types and cameras, do not support this instruction.
Vertical Skips

Vertical skips are associated with regions of interest (ROIs) that are smaller than the full chip. This feature allows you to bin and quickly traverse the rows that precede and follow the ROI. The rows to be processed and discarded are binned into blocks, each containing a number of rows, with the Number of Blocks parameter determining how many blocks there will be before and after the ROI.

![Diagram of Vertical Skips](image)

The block size determines how quickly the region preceding and following the ROI will be traversed. If the blocks are large, the region will be traversed quickly but there is the possibility of overloading the shift register and causing blooming. With small blocks, the risk of blooming will be minimized but the time to traverse will be large. WinView/32 uses an exponential algorithm to simultaneously achieve rapid traversing with minimal risk of blooming. The first block, specified in rows, is as large as possible. Each successive block is a factor of two smaller than the one preceding until the minimum block size is reached. All remaining blocks are the minimum block size. By making the first block as large as possible and subsequent blocks increasingly smaller, the region preceding and following the region of interest is traversed as rapidly as possible while minimizing risk of the shift register saturation.

Minimum Block Size: Sets the size, in rows, of the skip blocks that immediately precede the data. The default value will generally give good results.

Number of Blocks: Sets the number of binned “skip” blocks preceding and following the region of interest. The default value will generally give good results.

Note: The 2-D OMA array does not support vertical skips; and all of the rows on the array are read out and converted before the non-ROI information is discarded. The default Vertical Skips settings of Minimum Block Size: 2 and Number of Blocks: 5, while appearing to work, will result in invalid data. Instead, you must change these settings to 1 and 256, respectively, for the 2-D OMA array.
This page intentionally left blank.
Initial Data Collection

Introduction

The procedure in this chapter will enable you to begin collecting real image data promptly. Minimum requirements are assumed. If your system is more complex, e.g., requiring consideration of complex timing and synchronization issues, you will have to carefully study the other chapters of this manual as well as the manuals provided for the system hardware components before data acquisition that addresses those needs will be possible. Nevertheless, it is a good idea to begin with the simplest possible operating mode. This approach will give you operating experience and familiarity that will prove very valuable when you go to make more complex measurements. For additional information about the various menus and dialog boxes, refer to the online Help topics.

Underlying assumptions for the following procedure are that the hardware has been installed per the instructions in the hardware manual(s) and that the hardware setup as discussed in Chapter 2 has been completed. A further assumption is that a good imaging subject is available. Often, a picture or optical target mounted on a wall or lab bench will give good results. If initial data collection is to be done using a microscope, be sure to read the chapter on microscopy in your system manual before attempting data collection.

There are two data collection modes, Focus and Acquire:

- In **Focus** mode operation, no frames of data are stored; however, when **Stop** is selected, the **File Save** function can be used to save the displayed data. This mode is particularly convenient for familiarization and setting up. For ease in focusing, the screen refresh rate should be as rapid as possible, achieved by operating with axes and cross-sections off, and with **Zoom 1:1** selected.

- In **Acquire** mode, every frame of data collected is stored. This mode would ordinarily be selected during actual data collection. One limitation of Acquire mode operation is that if data acquisition continues at too fast a rate for it to be stored, data overflow will eventually occur. This could only happen in Fast Mode operation.

The following data collection procedures are done in the **Focus** mode.
WARNING

If using an intensified camera, note that data collection in the following procedure will be done in the Shutter mode, in which the camera can be damaged if exposed to light overload. Before powering the controller and camera, reduce the room light to reduce the risk of damage. Note that intensifiers are particularly at risk in pulsed laser operation, where overload spot damage can occur without raising the average current to where the overload detection circuits will be activated. It is far better to be careful than sorry. Before proceeding, take the time to carefully read the manual for your intensified camera.

Also, take particular care that your intensified camera is connected properly for shutter-mode operation. Cabling and peripheral considerations for intensified cameras are more complex than for unintensified cameras. Again, read your manual.

Temperature Control

Before continuing, the array temperature should be set to some easily achieved value in the operating range and Temperature lock should be established. The way this is done depends on the controller.

Temperature Control for a System using an ST-133 Controller or for a PVCAM-based System

1. Open the WinView/32 Setup menu and click on Detector Temperature. This will cause the Temperature dialog box to appear as shown in Figure 26.

2. Set the Target Temperature to the desired value (0° suggested for initial data acquisition).

3. Click on the Set Temp. button. When the Current Temperature: Unlocked message changes to Current Temperature: Locked, temperature lock will have been established.

Notes:

1. The ST-133 additionally has a Temp Lock LED on the Analog/Control module (at the rear of the controller) that visually indicates when temperature lock occurs.

2. If you are using the USB 2.0 interface or are have a PVCAM-based system, the Detector Temperature dialog box will not display current temperature information while you are acquiring data.

Temperature Control for Other Systems

ST-121, ST-130 or ST-138 Controller: Change the dial setting on the front panel of the Controller.

PentaMax: Set the temperature on the front panel of the Temperature/Power Supply unit.

MicroView: Not user-settable. Temperature is solely under software control.
Cleans and Skips

With some controllers, specifically the PentaMAX, ST-130, ST-133 and ST-138, there is a Cleans/Skips tab page in the Hardware Setup dialog box. Cleans are used to reduce charge buildup on the CCD array while waiting to begin data acquisition. Skips are used when the Region of Interest (ROI) is smaller than the full chip; they allow binning and quick traversing of the rows that precede and follow the ROI. For the procedures that follow, load the default values for these parameters by bringing the Cleans/Skips tab page to the front, and then clicking on Load Defaults followed by Yes.

Exception: With a PI-MAX camera, Cleans should be set to 1 and Strips per Clean to 4.

Experiment Setup Procedure (all controllers)

1. Open the Experiment Setup dialog box (Figure 27) from the Acquisition menu or by clicking on the button on the Custom Toolbar.

![Experiment Setup dialog box](image)

Figure 27. Experiment Setup: Main tab page; left, all but PI-MAX; right, PI-MAX

2. On the Main tab page, set the following parameters.

 - **Exposure time:** 0.1 seconds. (*For PI-MAX system using PTG, enter 0 sec*)
 - **Number of Images:** 1
 - **Use Full Chip:** selected
 - **Accumulations:** 1
 - **Gain (PI-MAX only):** 128
 - **Amplifier (if available):** High Capacity. *If this is a reported-only parameter, set it by selecting FAST on the ADC tab page.*
 - **Camera State (PI-MAX only):** Safe (the photocathode is biased OFF)
Avalanche Gain (Cascade® 512 or Cascade 650® only): Set to 0 initially and disabled. Enable and increase the gain for low-light level images.

WARNING

Intensified Cameras: If working with an intensified camera, the room light should be subdued so as to allow safe Shutter mode operation of the camera. Intensified cameras are quite susceptible to damage from light overload in Shutter mode operation and particularly subject to damage from light overload in Gated mode operation with high-intensity pulsed light sources. See your manual for detailed information.

Also, take particular care that your intensified camera is connected properly for Shutter mode operation. Cabling and peripheral considerations for intensified cameras are more complex than for unintensified cameras. Again, read your manual.

3. On the **Timing** tab page (Figure 28) set the following parameters.

Note: Not all of these parameters are provided for every controller model. Ignore parameters that don’t apply to your system.

- **Timing Mode:** Free Run (For PI-MAX system: Ext.Sync for DG535; Int.Sync. for PTG)
- **Triggered Mode:** not checked
- **Continuous Cleans:** not checked (For PI-MAX system: checked for DG535; unchecked for PTG)
- **Shutter Control:** Normal. (For PI-MAX system: Disabled Open for PTG)
- **Internal Sync (PI-MAX with PTG only):** selected
- **Pre Open:** Not checked. (For PI-MAX system: checked for DG535 or PTG)
- **Safe Mode:** selected
- **External Trigger:** not checked
- **Edge Trigger:** + edge
- **Delay time:** 0
- **Use Interrupts:** not checked

Figure 28. Timing tab page
4. On the **Data Corrections** tab page (Figure 29) all of the correction functions should be OFF.

5. On the **ADC** tab page (Figure 30), set the parameters as they apply to your particular system. Parameters that might be listed follow:

 Rate: ADC rate. Only those rates available for your A/D converter will be displayed, making it necessary to designate the A/D type first. Select the maximum speed allowed by the converter. If the camera is a PI-MAX with a Thomson 512 CCD, select FAST. ST-130 owners must confirm that the internal hardware jumpers of their controller are properly set for the desired speed. See the **ST-130 manual** for details.

 Type: For systems having more than one A/D converter, both FAST and SLOW will be available. Make this selection before selecting the rate or resolution.

 Controller Gain (PentaMAX only): Set to Gain 3

 Resolution: Number of bits. Choices limited by A/D type selection.

 Bit Adjust (ST-138 only): Set to No Clip

 ADC Offset (ST-133-5MHz only): Use the default setting.

 Analog Gain (ST-133): Medium

 Note: Not all of these parameters are provided for every controller model. Ignore parameters that do not apply to your system.
6. No **ROI Setup** tab page parameters need to be changed.

7. No **Processes** tab page functions should be selected.

8. On the **Data File** tab page, make the following selections.

 Auto Increment File Name Enable: should be OFF.

 Overwrite/Append Existing Files:
 Select Overwrite (data file will overwrite an existing file having the same name).

 Overwrite Confirmation: Check this box so that you will be warned that the specified file name is already in use. If not checked, the old data file will be overwritten by the new one. No warning is provided.

 Data Type AutoSelect: Should be selected.

 Auto-save and prompts: Select *Don't auto-save or ask to save*. With this selection, you won't receive a prompt when a file is closed as a result of starting a data collection. A prompt will still be issued if you close the file explicitly and it has not been saved since being collected.

 Use a New Window for each run: Leave unchecked.

9. Click on the button to the right of the **Name** field. This will open a browse box. Select the directory where you want the stored file to go. In Figure 32, the file name *testfile* will be used and the file will be stored in a directory named Data. The file type should be WinX Data (*.spe).
10. Click on the **Save** button to save the entered information and return to the Experiment Setup dialog box.

11. Click on **OK**. This will close the **Experiment Setup dialog box**.

12. Once again, click on **Acquisition** in the Menu bar. Again, the Acquisition menu will appear as shown in Figure 33.

Data Collection Procedures (Controller-Specific)

ST-133-Controller

The procedure that follows for these controllers is in two parts, **Video Focusing** and **Data Collection**. In focusing, images are displayed on the video monitor (not the computer monitor) and no data is collected. This allows rapid and easy adjustment of the system optics. Once the settings have been optimized, data collection can begin.

Focusing

This procedure applies for a system that includes an ST-133 Controller and a video monitor connected to the Video port (BNC connector) on the controller. If your system does not include a video monitor, go to the **Data Collection - All Controllers** section, which begins on page 56.

1. Select **Video** from the Acquisition menu. This will allow live data to be displayed on your video monitor.

2. Select **Video Focus** from the Acquisition Menu. The **Interactive Camera** dialog box (Figure 34) will open.

3. Click on the **RUN** button in the Interactive Camera dialog box. The camera will begin acquiring pictures at the fastest possible rate and the image will be displayed on the video monitor. **Note that the image will not be displayed on the computer monitor while the Interactive Camera dialog box is open**.

4. Focus the system optics and set the Interactive Camera dialog box **Exposure Time**, **RS170 Scaling** and **Offset** adjustments for the best-viewed image. In addition to the Exposure Time, Intensity...
Scaling and Offset parameters, the Pattern parameters determine which CCD pixels will be displayed on the video monitor. *Note that, in Focus mode, the images will not appear at the computer but only at the video monitor.* If the number of pixels on the CCD is very much larger than the number of video pixels, you can use the Pan function to select any one of nine different subsets to display. The Zoom function gives additional control. One-to-one mapping from the selected region to the screen occurs with 2× selected. You may additionally have the option of selecting Binning, in which a wider view is achieved by combining adjacent pixels, or Decimation, in which pixels are discarded according to an algorithm.

The exposure time will be the same as that set via the **Experiment Setup|Main** tab page. *The two exposure settings track. Changing it at either location should update the other setting automatically.* The Intensity Scaling, together with the Offset, determines how the image data is mapped to the 256 gray-scale levels. Begin with the Intensity Scaling set to “1 to 4096” (slider all the way to the right). Similarly, the Offset setting should initially be set to 2 (slider all the way to left).

5. When no further improvement in the observed image can be obtained, click on **Stop** in the Interactive Camera Operation dialog box to halt focus-mode operation.

6. Click on **Close** to close the Interactive Camera Operation dialog box and return to the Experiment Setup dialog box.

Data Collection

1. Click on **Focus** to begin collecting data. An acquisition can also be started by clicking on **Focus** on the Acquisition Menu or by clicking on the **Focus** button on the **Custom Toolbar**. Images will be continuously acquired and displayed on the computer screen and on the video monitor.

2. To store the most recent image, click **Stop Acquisition** on the Acquisition menu or click on the **Stop** button on the **Custom Toolbar**. Data acquisition will halt and the most recent image will be displayed. You can now use the Save function on the File Menu to save the data to a file having the name specified on the **Data File** tab page.

3. If you want to initiate data acquisition, select **Focus** again. To store the new data to disk, repeat Step 2.

This completes initial data acquisition with an ST-133 Controller.
PentaMAX Controller

The procedure that follows for the PentaMAX Controller is in two parts, **Focusing** and **Data Collection**. In focusing, images are displayed on the video monitor and no data is collected. This allows rapid and easy adjustment of the system optics. Once the settings have been optimized, focus mode operation should be ended and data collection performed.

Focusing

This procedure applies for a PentaMAX system that includes a video monitor connected to the Video port (BNC) of the PentaMAX. If your system doesn’t include a video monitor, go to the **Data Collection - All Controllers** section, which begins on page 56.

1. Select **Video** from the Acquisition menu. This will allow live data to be displayed on your video monitor.

2. Select **Video Focus** from the Acquisition Menu. The Interactive Operation dialog box that will be displayed depends on the PentaMAX version. Version 5 and higher will display the righthand dialog box shown in Figure 35. Earlier versions, display the lefthand dialog box.

3. Note the **Hardware LUT** field. This selection sets the scaling of the video display only. Unless the signal is very weak, the best LUT choice will be Gamma.

4. Click on the **RUN** button in the Interactive Operation dialog box. Data acquisition at the fastest possible rate will commence immediately and the image will be displayed on the video monitor. *Note that the image will not be displayed on the computer monitor while the Interactive Operation dialog box is open.*

5. Focus the system optics and, if necessary, adjust the **Exposure Time** in the Interactive Camera dialog box for the best-viewed image. The exposure time will be the same as that set via the **Experiment Setup|Main** tab page. *The two exposure settings track. Changing it at either location should update the other setting automatically.*

6. When no further improvement in the observed image can be obtained, click on **Stop** in the Interactive Operation dialog box to halt focus mode operation.

7. Click on **Close** to close the Interactive Operation dialog box and return to the Experiment Setup dialog box.

![Figure 35. PentaMAX Interactive Operation dialog box](image)
Data Collection

1. Click on **Focus** to begin collecting data. Data collection can be initiated by means of the **Focus** button in the Experiment Setup dialog box, by selecting **Focus** from the Acquisition Menu, or by clicking on the **Focus** button of the **Custom Toolbar**. Images will be continuously acquired and displayed on the computer screen.

2. To store the most recent image, click **Stop Acquisition** on the Acquisition menu or click on the **Stop** button on the **Custom Toolbar**. Data acquisition will halt and the most recent image will be displayed. You can now use the Save function on the File Menu to save the data to a file having the name specified on the **Data File** tab page.

3. If you want to initiate data acquisition, select **Focus** again. To store the new data to disk, repeat Step 2.

This completes initial data acquisition with a PentaMAX Controller.

Data Collection - All Controllers

The following data collection procedure works for all controllers. However, it doesn’t exercise some of the special features, such as video monitor support, available on certain controller models.

1. Click on **Focus** to begin collecting data. Data collection can be initiated by means of the **Focus** button in the Experiment Setup dialog box, by clicking on **Focus** on the Acquisition Menu, or by clicking on the **Focus** button of the **Custom Toolbar**. Images will be continuously acquired and displayed.

2. Observe the displayed data and adjust the system optics for the best possible image. *It may be necessary to readjust the Exposure Time (Experiment Setup|Main page).*

3. To store the most recent image, click **Stop Acquisition** on the Acquisition menu or click on the **Stop** button on the **Custom Toolbar**. Data acquisition will halt and the most recent image will be displayed. You can now use the Save function on the File Menu to save the data to a file having the name specified on the **Data File** tab page.

4. For a PI-MAX system, switch the **Camera State** back to **Safe** mode on the **Acquisition|Experiment Setup|Main** tab page.

This completes the initial data acquisition routine, which should work with any Princeton Instruments Controller.
Introduction

This chapter discusses how to open, close, and save existing data files to disk. Options for saving and deleting files will be explained. Data files created with temporary file names should be saved to disk periodically. Files should be closed completely to conserve RAM for data collection.

Data files can be deleted directly from WinView/32, without using the File Manager or any other file utility.

Note: WinView/32 can read data files acquired with earlier versions of WinView. Versions of WinView prior to 1.6 cannot read WinView/32 data files. Neither can versions prior to 1.6 read data files that were collected with earlier versions and then opened, modified and saved using WinView/32. This should be considered carefully before modifying and saving old data files with WinView/32.

Opening Data Files

In WinView/32 files are opened according to Win 95 conventions, as follows.

1. Select Open from the File menu. The File Open dialog box will appear (Figure 37).

2. Open the directory containing the data files. Clicking on the button at the right of the Look In field opens a browser function, allowing you to quickly and easily access the correct folder. As shown in Figure 37, the data files will be listed below.

3. If you want the software to control how the data will be displayed when the file is opened, check Auto Select. Leave Auto Select unchecked if you want to retain control over whether the data will be displayed as an Image, Graph or 3D Graph.

![Figure 37. Open dialog box](image-url)
Auto Select is the factory default selection.* In addition, one of the three radio buttons, **Image**, **Graph** or **3D Graph**, will be selected but grayed out if Auto Select is checked. If Auto Select is unchecked, the grayed out selection will become active and govern how the file is opened.

- When **Auto Select** is checked, the way the data is displayed depends on the number of data strips it contains.

 ⇒ If there are eleven or more strips of data, they will be displayed as a normal image, such as that shown in Figure 43 (page 63).

 ⇒ If there are at least three data strips but less than eleven, the data will be plotted as a 3D Graph as shown in Figure 44 (page 63).

 ⇒ If there are only two strips of data, they will be displayed as graphs stacked in a two-dimensional plot, the same as for a 3D Graph of two strips. See Figure 45 (page 64).

 ⇒ A single strip **will always** be plotted as a simple X vs. Y plot. Note that from two to ten strips, the intensity (Y axis) scale shifts position as required to read true for the selected strip.

- If **Image** is selected, all data points will be plotted as a function of the strip and pixel number.

- If **3D Graph** is selected, multiple data strips will be plotted as a function of intensity versus pixel number, the actual number of data strips plotted depending on the 3D Layout display parameter settings. All of the strips could come from the same frame, or, in the case of a file containing multiple frames, the same numbered strip could come from each frame.

- If **Graph** is selected, the selected data strip only will be plotted as a function of intensity versus pixel number.

4. Note the **Files of Type** field, which allows you to select files for listing according to their type. If **WinXData** (*.spe) is selected, only files of type *.spe will be listed. This is the native WinView/32 format. If **TIFF** or **8-bit TIFF File** (*.tif) is selected, only files of the type *.tif will be listed. If **All Files** (*.*) is selected, all files in the folder will be listed. WinView/32 can open either *.spe files or *.tif files (8-bit or 16-bit). Select type **8-bit TIFF File** to open an 8-bit TIFF file. Select type **TIFF File** to open a 16-bit TIFF file.

* The open/display default selection can be changed and saved from the Display Layout window.
5. Either double-click on the name of the file you want to open or single-click on the name and then click on the **Open** button. For example, with Image selected, double-clicking on Circuit.spe would open that file, producing the display shown in Figure 38. Note that there are many different ways of controlling how the image will be displayed, as described in Chapter 5.

![Figure 38. Circuit.spe Displayed](image)

Multiple Files: It is also possible to open multiple files at the same time by using the Win95 **Shift + Click** and **Control + Click** selection features. To select a range of contiguously listed files for opening:

- Hold the Shift key down and click on the first file in the range. The file will be selected.
- Then hold the Shift key down again and click on the last file in the range. That file and all the files between the two designated files will be selected.

To select multiple files which are not listed contiguously:

- hold down the **Ctrl** key and then click on the first file. That file will be selected.
- Then hold down the **Ctrl** key again and click on the second file. That file will also be selected.
- Proceed in similar fashion to select each file to be opened.

Once all files to be opened have been selected, click on **Open** (or double-click on a selected file) and all of the selected files will be opened.

There are a number of additional options and operations that can be performed from the Open dialog box. For example, clicking the Display Layout button will directly open the Display Layout dialog box, described in Chapter 5. In addition, options for the organization of the Open dialog box itself can be selected by means of the icons to the right of the **Look In** field, or by right-clicking the mouse anywhere in the file listing area of the box (but not on a file name).

Right-clicking on a file name opens a Windows shortcut menu that provides a number of additional operations, including open, delete, rename, print, properties, and edit operations such as copy and cut.
Saving Data Files

Data files must be saved to disk before exiting the software. It is also recommended that you save periodically when making measurements to minimize the overall risk of data loss. If you exit and there are unsaved data files, you will be prompted to save them. The File menu provides three Save commands, as follows.

1. **Save**: Saves the active data file using the original file name and type and in the original directory (folder).

2. **Save As**: The Save As dialog box is used to save the active data file to a user-specified file name and directory. The file type can be changed.

3. **Save All**: Saves all open data files using the original file names and directories (folders).

Sometimes during data collection or processing, windows will be opened and display data with an <untitled #> title. These are temporary files, and they must be saved to disk if you want to keep them. The Save As dialog box performs this function. The Save As dialog box also allows you to open a file and save it with a different name.

Saving Temporary Data Files

The WinView/32 software allows you to work with temporary files, files with names like <untitled 1>. To save these files, or to save any file to a new filename, perform the following steps.

1. Select **Save As** from the File menu. The Data File Save As dialog (Figure 39) appears.

2. Open the directory where you want the file saved. Clicking on the button at the right of the **Save In** field opens a browser function that will allow you to quickly and easily select the target directory.

3. Type in a name for the file. Windows 95 long file-name convention applies. It is not necessary to add the .spe extension. It will be added automatically according to the specified file type.

 Save as type: Indicates the file type. The data types currently supported are listed in Figure 40. If All Files (*.*) is selected, you will be able to save the file with any extension.

 The file, however, will be saved in the *.SPE file type format. **Only the data is saved. This could have some unexpected effects. For example, if you save a graph as a *.tif file, and then open the file with an image editor, you will see the data presented as a single strip image, not as a graph.**

4. Click on **OK** to save the file or **Cancel** to close the Data File Save As dialog without saving the file.
Data File tab page

The **Data File** tab page provides you with additional control and flexibility in naming and saving newly collected data. Because the settings on this tab page are applied to data acquisition, not post-processing, make your entries before acquiring data. The auto-save, auto-name, and auto-increment features allow you to acquire data and save it according to the filename template you define. Also, you can take advantage of the multiple open windows functionality and specify that each new data run opens a new window on the display window.

![Figure 41. Data File tab page](image)

Closing a Data File

An open data window can be closed by clicking on the box at the upper right of the window or by clicking on **Close** in the File menu. An open data window can be removed from view by clicking on the box at the upper right of the window. The file will be reduced to an icon on the task bar but the data will remain loaded in RAM. There may be situations where you would want to do this to reduce desktop clutter. Unless you intend to expand the file for display again, it is ordinarily better to actually close the file so that the RAM it is using will be freed for other use.

There are several ways of closing an open data window. Each is described below:

- **The** box at the upper right of the data window will close that window only.
- **The** box at the upper right of the window will also remove the data window from view by reducing it to an icon on the task bar. There may be situations where you would want to do this to reduce desktop clutter. However, the data will remain loaded in RAM, reducing the memory available for data collection. Unless you intend to expand the file for display again, it is ordinarily better to actually close the file so that the RAM it is using will be freed for other use.
- **Close** in the File menu closes all windows using the data set displayed in the active data window. This may be important if **New** in the Window menu or in the Data Window Context menu has been used to open additional windows with the same data. Simply clicking on **Close** in the File menu will close all windows containing the same data, regardless of how it is displayed.
- **Close** in the Control menu, accessed by clicking on the WinView/32 icon at the left end of the Title bar, closes WinView/32, as does double-clicking on the WinView/32 icon. Similarly, the key combination ALT+F4 also closes WinView/32.
- **Close All** in the Window menu closes **all** open data files.
- The key combination **Ctrl+F4** closes the active window only.
Deleting Data Files

You can delete data files directly from within WinView/32, without having to close WinView/32, and without having to use the Windows 95 Explorer or another file utility. This is achieved using the File Operations menu, accessed by right-clicking on the file name in the Open dialog box, as explained below.

1. Select Open from the File menu. Only files with the selected data type, *.spe or *.tif, will be listed.
2. Position the mouse cursor on the name of the file you want to delete and click the right mouse button. This will open the “right-click” File operations menu, as shown in Figure 42.
3. Click on Delete. Then answer yes to the query asking whether you wish to send the file to the recycling bin. The file will be deleted and the File Operations menu will close.

Note: Click on the Open dialog box Cancel button to exit the dialog box without deleting any files.

Multiple Files: It is also possible to delete multiple files at the same time by using the Win95 Shift + Click and Control + Click selection features. To select a range of contiguously listed files for deleting:

1. Hold the Shift key down and click on the first file in the range. The file will be selected.
2. Then hold the Shift key down again and click on the last file in the range. That file and all the files between the two designated files will be selected.
3. To select multiple files which are not listed contiguously:
4. Hold down the Ctrl key and then click on the first file. That file will be selected.
5. Then hold down the Ctrl key again and click on the second file. That file will also be selected.
6. Proceed in similar fashion to select each file to be deleted.

Once all files to be deleted have been selected, right-click on a selected file to open the File Operations menu. Then click on Delete to delete all of the selected files.
Displaying the Data

Introduction

WinView/32 can display data as an image, as a two dimensional graph, or as a 3D Graph (multiple strips from the same graph or the same strip from multiple frames). You can choose to allow the software control how the data will be displayed or make the selection yourself. To have WinView/32 control the data-display mode, simply select the **Auto-Select** check box provided on the File Open dialog box and also on the Display Layout dialog box. The Auto Select algorithm makes the selection depending on the number of data strips as follows.

⇒ If there are eleven or more strips of data, they will be displayed as a normal image, such as that shown in Figure 43.

![Figure 43. Image Display of 256 Data Strips](image)

⇒ If there are at least three data strips but less than eleven, the data will be plotted as a 3D Graph as shown in Figure 44.

![Figure 44. 3D Image Display of 10 Data Strips](image)
If there are only two strips of data, they will be displayed as graphs stacked in a
two-dimensional plot, the same as for a 3D Graph of two strips.

![3D Graph with Two Data Strips](image)

A single strip will always be plotted as a simple graph. Note that from two to ten strips,
the intensity (Y axis) scale shifts position as required to read true for the selected strip.

The file Open dialog box and Display Layout dialog box both contain the three display-
mode select radio buttons, Image, Graph and 3D Graph. If you want to control the
data-display mode yourself, simply leave Auto Select unchecked and the display mode
will correspond to whichever of the three radio buttons is selected.

Screen Refresh Rate

The Screen Refresh Rate is an important but often overlooked display performance
parameter. At times, such as when focusing, by making the screen refresh rate as rapid as
possible, the focusing operation may be much easier to perform than it would be with a
slow refresh rate. To obtain the fastest possible refresh rate, simply operate with the axes
and cross sections both switched off (View menu) and with the Zoom factor set to 1:1.
Note that the Zoom 1:1 button on the Data Window toolbar is only present when viewing an image. To check the refresh rate, click on the Status bar (bottom of screen)
Collection Status pane, which is immediately to the left of the Timer pane (right end
of Status bar). The refresh rate will be displayed in the Collection Status pane. Do not
confuse the screen refresh rate with the data collection rate.

Data Displayed as an Image

WinView/32 can display data as an image, as a two dimensional graph, or as a 3D
Graph (multiple strips from the same graph or the same strip from multiple frames). You
can choose to allow the software control how the data will be displayed or make the
selection yourself. To have WinView/32 control the data-display mode, simply check the
Auto-Select box provided in the File Open dialog box and also in the Display Layout
dialog box. The Auto Select algorithm makes the selection depending on the number of
data strips as described on page 63.
Displaying circuit.spe

The image used in this exercise is circuit.spe, one of the images supplied with your WinView/32 software. Once you become comfortable working with this image, you should have little difficulty in working with images from actual measurement data.

1. From the File menu, select Open. The Open dialog box (Figure 46) will appear, allowing you to select the image to be opened. The Look-In field provides a browser function so you can easily find the directory where the images. By default, the data directory will be a subdirectory of the directory where WinView/32 was installed. Subdirectory names and the filenames of all files of the specified type (the WinView/32 data type is *.spe) in the current directory are listed in the box below the directory name.

 ![Figure 46. Open dialog box](image)

 Note: The directory can be changed by changing the selection in the Look-In box. The next time the Open dialog box is opened, the new folder name will appear in the box and its contents will be shown.

2. If the Auto Select check box is checked, deselect it. Then select Image.

3. From the data directory select the image file called CIRCUIT.SPE. Click on the OK button. A window of the appropriate dimensions should appear immediately. The image display (Figure 47) may take a few seconds, depending on the speed of the computer.

 ![Figure 47. Circuit.spe Image](image)
Changing the Brightness Range

1. Click on \(5\%-95\%)\) (located beneath the displayed image as shown in Figure 47). You will observe a moderate brightening of the image as it autoscales on the central 90% of the image histogram. The brightest (pixels with high dark charge) and the darkest pixels (pixels with low response) are ignored.

2. Click on the (Autoscale) button, restoring the image to its initial appearance.

Brightness/Contrast Control

Select Palette on the Display menu. This will open the Brightness/Contrast dialog box (Figure 48). Note that the window includes a plot of display brightness (Y axis) versus data value (X axis). As settings are changed, the displayed curve change to reflect the change in the transfer function. (See the online Help for a detailed discussion of the palette and transfer function options.)

1. Change the brightness and contrast settings to obtain the most pleasing image display. Note that clicking on the small square above the Brightness scale and above the Contrast scale will restore the default brightness and contrast values (50).

2. Try different Function and Palette Type selections to see the effect on the displayed image. Note that the displayed curve will also change, reflecting the change in the brightness transfer function. Until you gain more operating experience, we suggest you leave the Function Type set to Linear, the Palette to Grayscale, and the Brightness and Contrast both to 50.

3. Click on OK to close the box. Any setting changes will be applied.
Selecting a Region of Interest

1. Using the mouse, position the cursor at one corner of the region to be defined, depress the left mouse button, drag the cursor to the diagonally opposite corner, and release the mouse button. Refer to Figure 49.

2. Click on the (Zoom In) button. The view will change so that only the selected region is displayed as shown in Figure 50.

 Note: The Display Layout Cursor tab page allows you to change how the ROI region is displayed.

3. Click on the (Undo Zoom-In) Button. The original view will be restored.
Data Window Context menu

For your convenience, the essential data window functions have been gathered into a single menu, illustrated in Figure 51. This menu, available whether the data is displayed as an image, graph, or 3D graph, can be accessed by right-clicking anywhere in the data display area. Brief descriptions of the provided functions follow.

Note: Right-clicking inside an ROI will open the ROI context menu.

Labeling Images and Graphs

For graphs and images, the normal context menu (right-click) is as shown in Figure 52.

This menu was changed for ROIs. If there is an ROI, and if the mouse is right-clicked in the ROI, the context menu changes to that shown in Figure 53.
Chapter 5 Displaying the Data 69

Figure 53. ROI Context menu

If the mouse is right-clicked outside the ROI, the normal menu (Figure 52) appears. The ROI context menu (Figure 53) contains the usual actions pertaining to the ROI (autoscaling on the region inside the ROI, and zooming in to the ROI region) plus three new actions:

- **Label Display**: which allows user labels to be placed on the display,
- **Erase Labels**: which removes ALL user labels from the display, and
- **Close ROI**: which erases the ROI with no other action (it doesn’t move the cursor!).

The **Label Display** action brings up a dialog box and opens an Edit box - **Inside the ROI!** as shown in Figure 54.

Figure 54. Label Display action
The dialog box allows loading a previously saved label (from one on the SPE file’s comment fields); alternatively you can type the label into the edit box. The label can be saved into a file’s comment field (when **OK** is clicked). The source comment field and the destination comment field can be different.

Clicking **Remove existing labels** will erase all previous labels from the display before adding the current label.

The **Settings** button brings up a dialog box with options for the label itself (Figure 55). The Display Label Settings dialog box allows you to change the color of the label text, to choose between an opaque (white) background and a transparent background, and choose whether the labels are to run vertically or horizontally. The opaque background works well with images, where the label can get lost inside the image.

The simplest way to label a display would be to place the ROI where the label should appear (the origin starts at the top left corner of the ROI box), right-click inside the ROI box, type the label text, and click **OK**. Figure 56 shows a label as entered in the label text entry box. Figure 57 shows the same label as it will appear with the data after clicking on **OK**.

![Figure 55. Label Options subdialog box](image)

![Figure 56. Label Text Entry box](image)

![Figure 57. Data with Finished Label](image)
Chapter 5 Displaying the Data

Generally it is advisable to save the label in a comment field; otherwise, once the label is printed and the display is closed, the label will be lost. In fact, once the label is on the display, it cannot be edited. However, if it has been saved, it can be edited, as follows.

1. Erase labels.
2. Call up the display label menu.
3. Load the label.
4. Edit the label in the edit box.
5. Check the **Save Label** box to save the changes.
6. Click **OK** to print the corrected label.

Labels are printed with the same font as is used for the axes. To change fonts, use the Display Layout, Axes dialog, and select Fonts… (this works even if axes are not displayed).

To reposition the label, move or resize the ROI (and Edit) box before you click on **OK**. Moving the box, however, requires that you position the mouse very near the edge of the box, because further in, the Edit box will capture the mouse. Resizing is done in the usual way with the ROI box handles. If the ROI box is accidentally erased, just redraw a new one in the desired location, and the Edit box will reappear.

The Edit box wraps lines at the end of the box, and the Label function will display the label as it appears in the box (Figure 58).

![Figure 58. Edit box with Line-wrapped Label and Finished Label](image)

To correct the line-wrapping, simply resize the ROI as shown in Figure 59.

![Figure 59. ROI resized to correct Line-wrapping](image)

The font can be changed after the label is printed on the display:
To change the background or color, the label must be erased and reprinted; it can only be altered inside the edit box.

Data Displayed as a 3D Graph

Data files can be opened as 3D graphs from the Open dialog box. Figure 61 shows a 3D graph with five data strips. Figure 45 (page 64) shows a 3D graph with two data strips. Both examples illustrate the behavior of the **Auto Select** algorithm as discussed on page 63. The following paragraphs contain procedures for opening and displaying data in graphical format.
Displaying Hid-lamp.spe

The data file used in this exercise is Hid-lamp.spe, one of the data files supplied with your WinView/32 software.

1. From the File menu select Open. The Open dialog box (Figure 62) will appear, allowing you to select the image to be opened. The Look-In box provides a browser function so that the directory where the images are located can be easily accessed. By default the data directory is a subdirectory of the WinView program directory. Files of the specified type (the WinView/32 data type is *.spe) in the current directory and any subdirectories are listed in the box below the directory name.

2. The Image, Graph and 3D Graph radio buttons at the bottom of the box allow you to select whether the file will be opened and displayed as an image, two dimensional graph or as a 3D graph. Select 3D Graph. (Auto Select should not be checked.)

3. From the data directory select the image file called Hid-lamp.spe. Click on the OK button. A window of the appropriate dimensions should appear immediately. The graph display may take a few seconds, depending on the speed of the computer. The initial appearance of the display may vary depending on the initial Display Layout parameter settings.

4. Select Layout on the Display menu. The Display Layout dialog box will open as shown in Figure 63.

5. Check and, if necessary, set the following parameter selections on each tab page.

 General tab page
 Display As: 3d Graph
 Auto Select: unchecked
 Axes: both boxes checked
 Cross Sections: both boxes checked
 Keep Window Placement: unchecked
Range tab page
 Initial Autoscale: checked
 Set to Full Range: checked
 Frame: 1

Color tab page: no changes

Axes tab page
 Horizontal axis: checked
 Horizontal label: checked
 Horizontal label string: Pixel
 Vertical axis: checked
 Vertical label: checked
 Vertical label string: Intensity

3D Layout
 3D Mode: Multi-strip; same frame selected
 3D Properties: Remove Hidden Line checked; other two boxes unchecked.
 Z Axis Endpoint: %X set to 20; %Y set to 40
 3D Marker curves: Marker Curves unchecked; Curve set to 5

6. Click on OK. The Display Layout dialog box will close and the data display,
exclusive of the intensity profiles, should appear as shown in Figure 64. Each
strip is displayed as a plot of intensity vs. pixel number. The first strip is at the
front and the last strip is at the back. Initially the cursor will be at the lower left.
Use the up arrow key to move to a higher numbered strip and the right arrow key
to move to a higher numbered pixel on the strip. Then click the Intensity
Autoscale key to scale the intensity profiles. Note that clicking the mouse button
at different points on the display will change the pixel selection but not the strip.

![Figure 64. Hid-lamp.spe 3-D Graph](image)

7. Press the Insert key repeatedly. Each time it is pressed the display expands
about the cursor position. Then press the Delete key repeatedly to contract the
display, restoring the appearance of the data display.
8. Note the cross-sectional displays in Figure 64. The vertical cross-section profiles the intensity at the same point on each successive strip. The horizontal cross-section profiles the intensity at each point on the same strip. If the large cursor is selected, cursor projections will intersect the cross section to show indicate the cursor position. These projections may not be visually aligned with the cursor position on the main plot. This effect will be particularly noticeable with a long Z axis. Because of perspective effects, the higher numbered strips will be further away and visually smaller. The axes automatically adjust so that they read true for the strip on which the cursor is located. However, because the cross-section profiles expand to use all of the available space, they will not be in alignment visually with the cursor. The profile shapes will be correct, and the point on the profiles intersected by the large cross-hair extensions will accurately indicate the cursor position. Also, the information box will accurately report the pixel number and intensity at the cursor position.

5%-95% Display Range

1. Click on \[\text{5-95\% Display Range}\]. The data display will shift so that it only fills the 5% to 95% region of the window range. Had the data initially extended all the way to the window boundary, the data display would have been slightly compressed to fit within the 5%-95% range.

2. Click on \[\text{Restore}\], restoring the image to its initial appearance.

3. Before advancing to the next topic, open the View menu. Then select the Small cursor and deselect Cross Sections.

Selecting a Region of Interest

1. Using the mouse, drag a rectangular region on the image as shown in Figure 65.

![Figure 65. Hid-lamp.spe 3D Graph with Region selected for viewing](image)

2. Click on \[\text{Zoom In}\] (Zoom In). The view will change so that only the selected region is displayed as shown in Figure 66.
3. Click on \(\text{Undo All Zoom-In} \). The original view will be restored.

Information box

On the View menu, select Info. The information box should appear as shown in Figure 67. The first line reports the intensity and pixel number at the cursor position. The second line reports the frame number, strip number, and the pixel number. The intensity in A/D counts is reported at the X and Y position corresponding to the cursor position. If a region is defined by dragging the mouse cursor, the region coordinates, length and height will also be reported. *You may have to lengthen the Information box for all this information to appear.*

Note: When you open the information box, it becomes the active window. To perform operations in the data display window, such as changing the selected strip, you must again make the data display window active by clicking the mouse cursor anywhere in the data box. The data-window title bar will become highlighted, indicating that it is the active window, and the cursor positioning functions will become operative again. The data displayed in the information box will continue to be updated automatically.
Displaying a Single Strip

1. Open the Display Layout dialog box by selecting Layout on the Display menu.

2. On the General tab page, with Auto Select unselected, click on the Display Type Graph radio button and then on OK. The single data curve for the strip on which the cursor is positioned will be displayed.

3. Try operating the cursor positioning keys to demonstrate their effect. The left/right arrow key move the cursor along the strip, and the up/down keys move it from strip to strip. The Home and End keys move the cursor to the strip ends, and Shift + Home and Shift + End move it the first strip and last strip, respectively. The Insert and Delete keys expand or contract the data about the cursor position.

Restore the 3D display by selecting 3D Graph on the Display Layout|General tab page.

Cursor

The cursor’s appearance and behavior are a bit different with graphical plots than with image plots, as detailed in the following table.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Image Plot</th>
<th>Graph</th>
<th>3D Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>No Cursor</td>
<td>No Cursor</td>
<td>No Cursor</td>
</tr>
<tr>
<td>Small</td>
<td>Small cross; both mouse and arrow keys can place cursor at any pixel on image. Home and End keys move cursor to end points on strip. Shift + Home moves cursor to first strip. Shift + End moves it to the last strip.</td>
<td>Small cross; left/right arrow keys select pixel on strip; up/down arrow keys select strip to be displayed. Home key moves to first pixel, End key to last pixel.</td>
<td>Small cross; left/right arrow keys change selected pixel on strip; Home key moves to first pixel, End key to last pixel. Up/down arrow keys move cursor from strip to strip. Shift + Home moves to first strip, Shift + End to last. Strips may all be from</td>
</tr>
</tbody>
</table>
Selection | Image Plot | Graph | 3D Graph
---|---|---|---
Large | Large cross; rays extend to edges of data set; with projections through the cross-section profiles if displayed. Both mouse and arrow keys can place cursor at any pixel on image. **Home** and **End** keys move cursor to end points on strip. **Shift + Home** moves cursor to first strip. **Shift + End** moves it to the last strip. | Same as Small Cursor and Graph combination. | Same as Small Cursor and 3D Graph except that cursor ray projections through the cross-section profiles are provided. These will not necessarily be visually aligned with the cursor.

Strip Selection
As described above, when displaying data as a graph, the up/down arrow keys can be used to select a higher or lower numbered strip. This is true if displaying multiple strips or a single strip. For additional utility where a large change is required, **Shift + Home** can be used to move the selection to the first strip and **Shift + End** to move it to the last one.

Four of the Custom Toolbar buttons similarly allow the selected strip to be changed when data is displayed as a graph.

- ![first strip](image)
- ![last strip](image)
- ![next strip](image)
- ![previous strip](image)

These buttons have no effect on the strip selection when viewing data as an image. Instead they select the first, last, next and previous frame respectively if the data set contains multiple frames.

Note: When displaying the data as a graph, to view data from multiple frames, it is necessary to select **Same Strip - Multi Frame** on the 3D Layout tab page of the Display Layout dialog box.

It might further be noted that these buttons do not appear on the default Custom Toolbar. Instead they must be added using the Customize Toolbar dialog box, accessed by selecting **Custom Toolbar** on the **Setup** menu.
Cursor Curve and Marker Curves

In analyzing a data display, it is often desirable to highlight the cursor curve and to have every n'th curve displayed in a different color as a convenient marker. WinView/32 provides these functions as demonstrated in the following procedure.

1. On the 3D Layout tab page, select Highlight Cursor Curve and Marker Curves On. Then press OK. The cursor curve and marker curves should be clearly delineated. Note that on a color monitor they would be in contrasting colors and much easier to see than in a black and white print (Figure 69).

![Figure 69. 3D display with Cursor Curve and Marker Curves](image)

Note that displaying the data with Highlight Cursor Curve displayed affects the time required to step the cursor from curve to curve. If Highlight Cursor Curve is OFF, the cursor can step without updating the entire display. If Highlight Cursor Curve is ON, the entire display updates with each step, a considerably slower operation.

2. If the Cursor Curve and Marker Curves don’t appear, the problem may be with the assigned colors, which should be different from the normal graph color and different from the background color. On the Display Layout Color tab page, it the Active 3D Graphs button that allows the cursor-curve color to be set. The Marker Graphs button is used to set the marker-curves color.
Hidden Surfaces
You may wish to shift the view to show the hidden or underside of the display, as illustrated in the following procedure.

1. Open the Display Layout dialog box and make the following changes.

 Range: Change Y so that the range is “from 40 to 1” (not “from 1 to 40”).

 3D Layout: Select Show Hidden Surface and deselect Highlight Cursor Curve and Marker Curves On. Remove Hidden Lines should be selected. Change the Z Axis Endpoint to X% 25 and Y% 0.

 The Z Axis Endpoint can be set by entering values up to 80% X (either polarity) and 80% Y (positive only) or graphically by using the mouse. If you click on Adjust Z Graphically and then on OK, the Z Axis Adjust window will appear. Position the cursor in the window, depress the left mouse button, and drag the cursor around the WinView/32 desktop until you see the desired axis orientation. Then release the mouse button.

 Because the data is displayed the moment you depress the mouse button and then updated as you drag the cursor, you can see the effects of dragging the axis while moving it. When working with a high-density data set, every nth line will be suppressed during the adjustment so the process remains fast. When the data is displayed as desired, releasing the mouse button will cause the entire data set to be displayed with the new orientation.

 TIP: Since you can move the cursor outside the data window, reducing the data window size before adjusting the Z axis will give you greater range of motion while dragging the axis.

2. Click on OK. The data should be redisplayed as shown in Figure 70, with the hidden surface (darker lines) clearly visible.

 ![Figure 70. 3D Plot with Hidden Surfaces](image)
3. If the hidden surfaces aren’t clearly delineated, it may be necessary to change the color assigned to them, which should be different from the normal graph and background colors. The Normal Hidden Surface button on the Display Layout Color tab page allows the hidden-surface color to be selected. Note that the Marker Hidden Surface button allows the color of the marker curves in hidden surface regions to be set.

Opening the Display Layout dialog box

With the image still open, select Layout from the Display menu. The Display Layout dialog box will open (Figure 71). Note that you can also access the Display Layout dialog box by clicking on the Display Layout button of the Open dialog box.

Viewing Axes and Cross Sections

1. On the General tab page, select Axes Horizontal, Axes Vertical, Cross Sections Horizontal and Cross Sections Vertical. Refer to the online Help for additional information on Axes and Cross Sections.

2. Click on the Range tab to move the Range tab page (Figure 72) to the front. Initial Autoscale and Set to Full Range should be selected. The Frame number should be “1.”

3. Click on the OK button. The Display Layout dialog box will close.

4. Click on the (Autoscale) button at the bottom of the image window. Then select the large cursor by clicking on Cursor on the View menu and then on Large as shown in Figure 73.
5. The display should now appear as shown in Figure 74. The axes will be labeled in image pixels and strips with respect to the CCD chip used to acquire the image. The vertical image intensity profile at the cursor position will be displayed to the left and the horizontal image intensity profile at the bottom. The minimum and maximum values for each profile are indicated. Note that you can use the mouse and drag the axes and profile boundaries to change the size of the profile display regions. To change the cursor location, simply click the mouse at the new spot. The cross-sectional graphs will change to reflect the profiles at the new location.

Information box

On the View menu, select Info. The information box should appear as shown in Figure 75. The intensity in A/D counts is reported at the pixel and strip position corresponding to the cursor position. Also reported are the Frame number, Aspect ratio, and X and Y Zoom in effect. If a region is defined by dragging the mouse cursor, the region coordinates and diagonal length will also be reported.

Autoranging the Intensity in a ROI

1. Drag the mouse cursor to define a rectangular region of interest on the displayed image.

2. Click on \(\text{(Autoscale)} \). The display will autorange to the intensity range in the defined region. The effect will be an increase in contrast in the observed image. Throughout the image, pixels darker or lighter than those in the defined region will be displayed as black or white.
3. Click the mouse anywhere in the displayed image and click again to restore the original image view.

Relabeling the Axes

1. Open the Display Layout dialog box and open the Axes tab page (Figure 76). Note that Horizontal Axis, Vertical Axis, and the Label box for each are all checked (If unchecked, the corresponding axis or label would not be displayed.)

2. Change the axis label for both axes. Then click on OK. The displayed axes will no longer be named Pixel and Strip, but rather the new labels.

3. Try selecting different fonts to see the effect. Only True-type or Type 1 (Postscript) fonts will work correctly. Open the Fonts dialog box, change the various font choices, and click on OK twice. To return to the original font choices, select 10 pt Arial Regular.

4. Reopen the Axes tab page and change the axis labels back to their original designations (Pixel for horizontal; Strip for vertical).

Changing the Color of the Axes and Labels

1. Open the Color tab page. Note that there is a button for each item to which a color can be assigned and that the current color for each item is indicated in a color swatch to the right of the button. The default for the Axis is yellow.

2. Click on Axis. The color palette will open (Figure 78).
3. Select a different color by clicking on the swatch of the desired color.

4. Then click on OK to close the Color dialog box and on OK again to close the Display Layout dialog box. The axes and colors will now appear with the new color.

5. Repeating the process, open the Color dialog box again and restore the default color. Again, click on OK to close the Color dialog box and on OK again to close the Display Layout dialog box. The axes and labels will now be displayed in the original color.

![Color Palette]

Figure 79. Display Layout Color Palette

Specifying a New ROI and Intensity Range

1. Open the Range tab page. Note that you can change the displayed intensity range as well as the X-Y range.

2. Try entering more restricted ranges and note how the displayed image changes. Changing the X-Y range by entering new values is functionally equivalent to changing the displayed area by dragging the cursor as previously described. Selecting a narrower intensity range results in pixels brighter and darker than the range limits being displayed as white and black respectively. The effect is to increase the contrast of the image. Each time a change is made, click on OK to close the Display Layout dialog box and observe the effect of the change.

3. On completing your display experiments, restore the defaults (Autoscale Intensity and Full Range checked) and close the data file.

Displaying a Z-Slice

1. Open a data file with multiple frames.

2. Position the cursor in the data window.

3. Click on Z-slice button. It will cut a section across multiple frames.
Part 2
Advanced Topics

Chapter 6, Cleaning .. 87
Chapter 7, ROI Definition & Binning .. 93
Chapter 8, Correction Techniques .. 99
Chapter 9, Image Math .. 103
Chapter 10, Post-Acquisition Mask Processes ... 109
Chapter 11, Additional Post-Acquisition Processes ... 121
Chapter 12, Printing .. 127
Chapter 13, Pulser Operation ... 131
Chapter 14, Custom Toolbar Settings ... 147
Chapter 15, Software Options .. 151
This page intentionally left blank.
Cleaning

Introduction

An acquisition is made up of an exposure period and a readout period. For the rest of the time, the camera is waiting to be told to acquire images. During this waiting period, charge generated from different sources builds up on the array unless some kind of cleaning process is ongoing. Cleaning minimizes the impact of the unwanted signal (noise) by row shifting the accumulated charge to the output register and then discarding it.

Depending on your system, WinView/32 will provide you with up to five cleaning features. The most common cleaning feature is Clean Cycles, which occur until Acquire is selected and may continue up to the entered number of cleans before exposure begins. If External Synchronization is being used to control exposure, a feature called continuous cleans may be used in addition to the standard clean cycles. Where the camera and controller support it, a specialized version of continuous cleans Continuous Cleans Instruction can be used with the External Sync timing mode. The readout of ROI information is enhanced by the Vertical Skips feature. With Version 5 of the ST-133 Controller, continuous cleans for Kinetics is also supported. All of these cleaning features and their interrelationships are described in the sections that follow.

Clean Cycles

The basic cleaning function is implemented by clean cycles. These cycles start when you turn the controller on and a clean pattern is programmed into the controller. Their purpose is to remove charge that accumulates on the array while the camera not acquiring data (i.e., exposing and reading out the array). The timing diagram below is for an experiment set up to acquire three (3) images in Freerun timing mode with normal shutter operation selected. In this diagram clean cycles occur before the first exposure and after the last readout period.

Note: The start of the exposure is signaled by NOTSCAN going high but will not occur until the current clean cycle has finished.

Figure 80. Clean Cycles in Freerun Operation
The configuration of clean cycles is performed on the **Hardware Setup|Cleans/Skips** tab page (Figure 81). When you set up the camera for the first time, default values are automatically inserted into these fields. These will give the best results for most applications. Even so it is a good idea to know what these entries mean with regard to cleaning.

Let's begin with **Number of Strips per Clean**. This parameter sets the number of rows that will be shifted and discarded per clean cycle. While a large number such as the number of rows in the array may result in the best cleaning of the array, the tradeoff is that there may be a significant delay between the receipt of a start exposure signal (**NOTSCAN** signal at the **SCAN** BNC goes high) and the beginning of the actual exposure. This delay occurs because the current clean cycle must be completed before a start exposure signal received during the cycle will be implemented. Typically, the default setting is much smaller and in time critical experiments, the setting should be 1 or 2.

The **Number of Cleans** value is usually set to zero (0). These are additional clean cycles that can be required after a start exposure signal is received and the current clean cycle has finished. The maximum value for this entry depends on the controller. For example, the range of values for an ST-133 is 0-7 and is 0-255 for an ST-138.

Continuous Cleans

Clean cycles will always occur but an additional cleaning function called Continuous Cleans is provided when the start of exposure is tied to an external trigger (i.e., the experiment is being run in **External Sync** timing mode.)

Figure 83 shows the timing diagram for an experiment with External Sync trigger active on the negative edge. Note that the timing diagram shows two possible setups for the shutter. In the first setup (Normal), the shutter is opened when External Sync goes low. Because it takes time to open a shutter, data may be missed while the shutter is opening. In the second setup (Preopen), the shutter is opened when the **NOTSCAN** signal (at the **SCAN** BNC on the back of the ST-133) goes high. The advantage is that the shutter is fully opened when the exposure (triggered by External Sync) begins. The disadvantage is that ambient light is no longer being blocked from the array during the period between **NOTSCAN** going high and the External Sync going low. Continuous cleans provides a way to get rid of the signal that accumulates on the array during that interval.
Figure 83. External Sync Timing Diagram

Figure 84. External Sync with Continuous Cleans Timing Diagram

Figure 84 shows the same timing diagram with the addition of continuous cleans (indicated by the shaded areas labeled CC). Continuous cleans are additional clean cycles and defined by the same parameter values as the standard clean cycles. When the External Sync trigger arrives during continuous cleaning, the current clean cycle must be completed before the exposure will begin. In time critical experiments, the number of rows per clean (set on the **Hardware Setup**|**Controller/Camera** tab page) should be 1 or 2 to minimize the delay.
Continuous Cleans Instruction

If the controller and the camera support it, a specialized cleaning function can be used when continuous cleans is active. This function, "Continuous Cleans Instruction", can only be activated if the checkbox for it is visible on the Hardware Setup|Cleans/Skips tab page (see Figure 85).

Continuous cleans instruction does horizontal shifts while doing vertical shifts for a faster continuous clean. With this instruction, the delay between an External Sync trigger and the start of exposure is minimized.

Continuous cleans instruction will be used in place of the standard continuous cleans if both Use Continuous Cleans Instruction on the Cleans/Skips tab page and Continuous Cleans on the Experiment Setup|Timing tab page are checked.

Figure 85. Cleans/Skips tab page: Continuous Cleans Instruction

ROIs and Cleaning

An ROI is a user-defined subsection of the array. As with full frames, the defined clean cycles are used to keep charge from accumulating on the array while it is waiting for a start exposure signal and after the data has been readout of the array. The specialized cleaning function for an ROI – Vertical Skips – is applied when the ROI is read out. Vertical Skips parameters are used to shorten the readout/discard time for the rows before and after the ROI. Minimum Block Size sets the number of invalid rows (horizontal lines of the CCD) to bin before the valid data. Number of Blocks sets the number of these blocks to shift and discard before going to a geometric grouping algorithm. Refer to "Vertical Skips" on page 45 for detailed information about vertical skips and the grouping algorithm.

Note: The 2-D OMA array does not support vertical skips; and all of the rows on the array are read out and converted before the non-ROI information is discarded. The default Vertical Skips settings of Minimum Block Size: 2 and Number of Blocks: 5, while appearing to work, will result in invalid data. Instead, you must change these settings to 1 and 256, respectively, for the 2-D OMA array.

Kinetics and Cleaning

Kinetics is a special type of operation in which most of the CCD is mechanically or optically masked, leaving a small section open to light. This section is then shifted under the mask very quickly. The defined clean cycles are used to keep charge from accumulating on the array while it is waiting for a start exposure signal and after the data has been readout of the array. In addition to clean cycles, continuous cleans for kinetics is supported by Version 5 (or higher) of the ST-133 Controller. For kinetics experiments, continuous cleans are only applied between the first NOTSCAN low-to-high transition and the
External Sync high-to-low transition. Because of the speed at which the array is then shifted, exposed, and shifted no further cleaning occurs until the last frame has been exposed and shifted. At that point, the clean cycles begin again.
This page intentionally left blank.
Chapter 7

ROI Definition & Binning

Overview

General
A Region of Interest (ROI) may be the entire CCD array or it may be a rectangular subregion of the array. For data acquisition, the definition of such a region is done from the ROI Setup tab page (Figure 92), accessible after selecting Experiment Setup from the Acquisition menu. Easy Bin is a simple way of defining a single full chip width ROI. ROI Setup allows you to create multiple ROIs with greater flexibility in ROI location and width.

Each ROI is defined in the X and Y direction by a start pixel, an end pixel, and a group/height (binning) factor. After one or more regions have been defined and stored, data acquisition will use these regions to determine which information will be read out and displayed and which information will be discarded.

When ROIs are used to acquire data, the ROI parameter information (for the first 10 ROIs) is stored in the data file when that data is saved to disk. You can review this information for the active data display by using the File Information functionality (accessible from the File menu or from the Display Context menu).

Notes:

1. For Flatfield Correction, Background Subtraction, etc., the images must be exactly the same size.

2. References to X and Y axes assume that the shift register is parallel to the X-axis and that the data is shifted to the shift register in the Y direction. See Figure 86 below.

Figure 86. Assumed CCD Array Orientation
Binning (Group and Height parameters)

Overview
WinView/32 allows you to define rectangular groups of pixels (of any size) that will be added together to create an image. This process adding the data from adjacent pixels together to form a single pixel (sometimes called a super-pixel) is called binning. Separate Group parameter values can be entered in the X and Y directions for every defined parameter to give you the greatest possible flexibility in controlling the readout. Although modest binning may be employed to increase the sensitivity, there is a tradeoff in that it adversely affects the image resolution. As a result, binning when imaging is normally limited to a few pixels vertically and horizontally (2x2, for example).

Binning can be set up to occur during data acquisition either while data is being shifted into the shift register (hardware binning) or after the data has been sent to the host computer (software binning). Post-acquisition binning can be performed on previously acquired data (see “Binning and Skipping”, page 124).

Hardware Binning
Hardware binning is performed before the signal is read out by the preamplifier and may be used to improve the signal to noise (S/N) ratio. For signal levels that are readout-noise limited this method improves S/N ratio linearly with the number of pixels grouped together. For signals large enough so that the camera is photon shot noise limited, and for all fiber-coupled ICCD cameras, the S/N ratio improvement is roughly proportional to the square-root of the number of pixels binned.

Because hardware binning is performed while the signal is shifted into the readout register, the readout time and the burden on computer memory are reduced. However, this time and memory savings are at the expense of resolution. Since shift register pixels typically hold only twice as much charge as image pixels, hardware binning of large sections may result in saturation and “blooming,” spilling charge into adjacent pixels.

If you want to use hardware binning, you define the binning parameters on the Experiment Setup|ROI tab page. These settings will be used for acquiring data until you change the ROI size or the amount of binning.

Note: If you have a PCI card, you may need to ensure that the number of pixels to be read out is always an even number: a warning will appear if number of pixels needs to be changed. If you are doing binning, the number of pixels digitized (after hardware binning is complete) must be an even number.

Software Binning
If blooming is an issue, you can use software binning instead of hardware binning. Software binning is activated by checking Use Software Binning on the ROI Setup tab page. While software binning will prevent saturation of the CCD chip shift register pixels, it is not as fast as hardware binning.
Defining ROIs

TIP: You can acquire a full-chip data set without losing your ROI definitions. To do so, simply click on the Use Full Chip radio button on the Experiment Setup|Main tab page. As long as Use Full Chip is selected, the ROI setup parameters are ignored and data collection will result in full frame data sets. To switch back to a defined ROI pattern, click on the Use Region of Interest radio button on the Experiment Setup|Main tab page.

Examples of Imaging ROIs

Figure 87-Figure 90 show possible ROI patterns. Note that the patterns in Figure 90 demonstrate varying size ROIs.

![Figure 87. Single Full-width ROI](image)

![Figure 88. Single Partial-width ROI](image)

![Figure 89. Multiple Full-width ROIs](image)

![Figure 90. Multiple ROIs with Different Widths](image)
Constraints on Defining Multiple Regions of Interest (ROIs)

General: You may create more than 10 ROIs but when data is acquired using these ROIs, the parameter information for only the first 10 ROIs will be stored when you save the data.

In this mode, ROIs can have varying sizes and degrees of overlap. However, when you define multiple ROIs like those in Figure 90, the computer automatically generates six “side-effect” ROIs in the regions where extensions of the strips and columns of the defined ROIs intersect. Both the defined and computer generated ROIs will be stored and the data for both will be displayed (see Figure 91). The side-effect ROIs are necessary to accommodate hardware limitations.

Methods of Defining and Storing ROIs

A region of interest (full-width or partial width) can be defined by:

1. Entering values for the Pixels (X) and Strips (Y) parameters from the keyboard.
2. Dragging the mouse cursor on a displayed image to define a rectangular region and then clicking the Mouse button. Before using this method, you must acquire a Full-Chip image. Otherwise, you will get a "Size of Image in Active Window is Incompatible with Current Chip Size” message when you try to define an ROI.
3. Defining the region with the mouse and then changing parameter values via the keyboard before storing the pattern. This allows you to change a full-width ROI created by mouse selection to a partial-width ROI like the one in Figure 88.

After an ROI is defined, its pattern can be stored, edited, or deleted. All defined areas will be indicated on the displayed image after they have been stored. If a pattern is being edited, its outline will be green and all other patterns will have red outlines. Purple outlines will be drawn if two or more patterns are defined that do not have identical X Start and End points (these outlines represent additional data that will be included in the image acquired using the ROI Setup). The display of defined regions of interest is automatically updated when patterns are added or cleared. Stored patterns are save to disk when you exit the WinView/32 and are automatically loaded the next time you start the program.
Notes:
1. Right-clicking inside an ROI opens the ROI Context menu, which, in addition to providing auto-scale and zoom functions, enables the labeling of image and graphical data.

2. The Experiment Setup|Save/Load tab page allows all experiment set parameters, including ROI, to be saved in a user-designated file for later recall. See the discussion of the Save/Load tab page in the online Help.

Defining ROIs by Keyboard entry
1. Open the Experiment Setup dialog and click on the ROI Setup tab to open the ROI Setup tab page (Figure 92).

TIP: Acquire a full-chip image before adding or editing ROI patterns. The existing patterns will be superimposed on the image.

2. Note the Number Stored value. This will tell you if how many ROIs have already been stored. Depending on what you want to do, you may want click on Clear or Clear All to remove stored ROI patterns.

To add a new pattern, click on the spin buttons (next to the Number Stored text) until the text to the far left is New Pattern. This will not be necessary if there are no patterns stored.

a. Enter the X-axis Start, End, and Group values. The Group value controls the X-axis binning: 1 indicates no binning; higher values indicate the number of pixels being binned to increase the sensitivity at the expense of resolution. Multiple ROIs can have different X-axis values.

TIP: If you're not sure of the chip size, open the Main tab page and note the X and Y values there.

b. Enter the Y-axis Start, End, and Group values. The Start and End values indicate the height of the image and where the image is located along the Y-axis. Group determines the Y-axis binning.

c. Click on Store to store the newly created ROI. The Number Stored will be updated. Repeat this process until you have finished adding ROIs.

4. To edit an existing pattern, click on the spin buttons until the pattern number is displayed in the Edit Pattern field.

5. Then make your changes.

6. Click on Store to store the changed ROI pattern.

Note: To scan the full CCD chip at any time, simply select the Use Full Chip radio button (on the Main tab page) and begin acquisition.
Defining ROIs by Mouse input

Often you can easily identify a region of interest by visually inspecting the full-chip image. When this can be done, it is very easy to define the ROI graphically as follows.

1. First, click on the Use Full Chip radio button ([Experimental Setup] Main tab page) so that a full-chip image will be acquired. Then click on Run. Alternatively, if you already have an image, open this image and display it on screen.

2. Next click on the Use Region of Interest radio button (Main tab page). Then click on the ROI Setup tab to display the ROI Setup tab page. If there are already regions stored, you will now see them displayed as rectangles on the displayed image.

3. Click on the spin button to the right of the New/Edit Pattern field until the field label says New Pattern (instead of Edit Pattern).

4. Use the mouse to drag an ROI box over the desired region in the image display.

5. Click on Mouse (ROI tab page) to enter the ROI information. Once this information is displayed on the tab page, you edit it.

6. Click on Store to save the new pattern.
Chapter 8

Correction Techniques

Introduction

Advanced data collection includes background subtraction, flatfield correction, CCD blemishes removal and Cosmic Ray removal. The skillful use of these techniques can significantly enhance measurement capabilities. Note that not all of these techniques will be available in early releases of the software.

Background Subtraction

Princeton Instruments systems are adjusted so that data have a small offset. This offset assures that small signals won’t be missed. This offset can be subtracted after the signal is acquired to prevent it from having any influence on the data.

Background subtraction allows you to automatically subtract any constant background in your signal. This includes both constant offsets caused by the amplifier system in the controller as well as time-dependent (but constant for a fixed integration time) buildup of dark charge. Some users collect a background image with the shutter open, including ambient light in their background data. The background subtract equation is:

$$(\text{Raw image data} - \text{Background}) = \text{Corrected image data}.$$

When background and flatfield operations are both performed, background subtraction is always performed first. The equation is the following:

$$(\text{Raw image data} - \text{Background})/\text{Flatfield} = \text{Corrected image data}.$$

Below are instructions for collecting and using background data files.

Acquiring Background Files

This operation is similar to normal data acquisition.

1. Use exactly the same temperature setting as will be used in data collection. Wait at least 30 minutes after the camera has reached operating temperature to ensure stability.

2. Set the same binning parameters, ROI and Exposure.

3. Select **Acquire Background** from the Acquisition menu. This will immediately acquire a background file using the Experiment Setup parameters, only the shutter will remain closed for most applications.

To acquire a background with the shutter open, or if the Acquire Background feature is too restrictive in some other way, a background file can be collected as a normal data file. Once the file is collected and stored, enter the filename in the Background Subtract filename box on the **Experiment Setup Data Corrections** tab page (see Figure 93).
Setting Automatic Background Subtraction

These steps instruct the software to automatically subtract a previously stored background file from each new data acquisition.

1. Select Experiment Setup from the Acquisition menu or click on the button on the Custom Toolbar. This will open the Experiment Setup dialog box.

2. Click on the Data Corrections tab. The Data Corrections tab page will be selected (Figure 93).

3. Click on the Background checkbox to turn on background subtraction. Type in the name of a background file if it is in the current directory. Alternatively, click on the button at the end of the entry window to open the file browser to select the background file if it is in a different directory.

4. Once the Background filename has been entered, click on the OK button. This saves the background filename for all future data acquisitions, or until the Background is turned off.

The filename entered in the Background box will be subtracted from each new file before it is displayed or stored. If both Flatfield and Background are selected, the background will be subtracted first, before the flatfield correction.

Background Subtraction with Intensified Cameras

To properly perform background subtraction with an intensified camera, a new background must be acquired whenever the intensifier gain setting is changed. This is necessary because changing the intensifier gain also affects the dark charge of the intensifier (EBI).
Chapter 8 Correction Techniques

Flatfield Correction

Flatfield correction allows you to divide out small nonuniformities in gain from pixel to pixel. The instructions below set the flatfield correction to be performed before data are saved to RAM or disk.

Acquiring a Flatfield File

This operation is similar to normal data acquisition.

1. Use exactly the same temperature setting as will be used in data collection. Wait at least 30 minutes after the camera has reached operating temperature to ensure stability.

2. Set the same binning parameters and ROI. If you plan to use a background file with data collection, on the Experiment Setup dialog select Background and enter the name of the background file. This background file will be subtracted from the flatfield file before it is saved to disk.

3. Illuminate the camera uniformly. The accuracy of this uniformity will be translated into an accurate flatfield correction.

4. Select **Acquire Flatfield** from the Acquisition menu. This will immediately acquire a flatfield file using the Experiment Setup parameters. Unlike background subtraction, the shutter will open and close normally.

5. If background subtraction was selected, the background file will be subtracted from the flatfield file before it is saved to disk.

If the Acquire Flatfield feature is found to be too limiting in some way, a flatfield file can be collected as a normal data file. Once the file is collected, enter the filename in the Flatfield Correction filename box on the Experiment Setup Data Corrections tab page see (Figure 93).

Automatic Flatfield Correction

These steps instruct the software to automatically divide each new data file, pixel-by-pixel, by the specified flatfield file.

1. Select Experiment Setup from the Acquisition menu or click on the **Acquire Flatfield** button on the Custom Toolbar. This will open the Experiment Setup dialog box.

2. Click on the Data Corrections tab to select the Data Corrections tab page (Figure 93).

3. Click on the Flatfield check box to turn on Flatfield correction. Type in the name of a flatfield correction file in the current directory. Alternatively, click on the button at the end of the field to open the file browser to select the flatfield correction file if it is in a different directory.

4. Once the Flatfield filename has been specified, click on the **OK** button. This saves the flatfield filename for all future data acquisitions, or until the Flatfield correction is turned off.

Each pixel in a new file will be divided by the corresponding pixel in the Flatfield file. If both Flatfield and Background are selected, the background will be subtracted first, before the flatfield correction.
CCD Blemishes

Columns specified as bad in the blemish file will be replaced by interpolated data (based on the column before and the column after the bad column) as data is collected. After you click on the Remove checkbox, you can select the appropriate blemish file. Clicking on the button at the right of the Blemish File Name field opens a browse dialog box so you can locate and select a file. If you don't have a blemish file but have determined that there are one or more bad columns, you can create one to be used.

Note: CCD Blemishes removal may not be implemented in early releases of the software.

Creating a Blemish File

1. Open an ASCII text editor.
2. On the first line, key in the number of columns on the CCD. For example, you would key in 1024 if the CCD format was 1024 x 1024.
3. Press [Enter].
4. For each CCD column, enter either a 0 (no blemish) or a 1 (blemish) and press [Enter]. If there was only one blemish and it was in column 10, you would have 9 lines of 0s, a 1 in the tenth row, and 0s in the remaining 1014 lines.
5. When you have finished entering the 0s and 1s, save the file with a .BLE extension. Files with this extension are recognized by WinView as blemish files.

TIP: If you have a long array, use a spreadsheet that can save data to .TXT files. The numbered rows will help you keep track of where you are. When you have finished with the data entry, save the data to a text file (.TXT extension) and then change the file extension to .BLE.

Cosmic Ray Removal

Causes highly localized spikes, such as would be caused by cosmic rays interacting with the silicon of the CCD, to be removed from the data after it is acquired but before it is stored. Two different techniques (in addition to OFF) can be selected. The Temporal technique compares a series of images and requires no user parameters. The Spatial technique compares the data with the set threshold level. If Spatial is selected, the Sensitivity setting determines how large a data spike must be to be identified as a cosmic ray effect (essentially the Sensitivity is a gain setting on the thresholding algorithm. A value of 0 will find 0 cosmics, while a setting of 100 will be most sensitive.). A setting of 50 will give good results in most situations. Cosmic ray data is replaced by interpolated before-and-after data.
Image Math

Introduction

A variety of mathematical operations can be performed on WinView data files. This functionality, called Image Math, is selectable from the Process Menu. The four tab pages on the Math dialog box (Figure 95) allow you to select the source file(s), operation, and the destination file for the results of the selected mathematical operation (displayed at the top of the dialog box). Additionally, you can use the mouse to specify an ROI to be processed (available on tab pages A and B).

Source Data and Destination Selection

As many as three data files can be involved in math operations and there is a corresponding tab page for each of them, A, B, and C. A and B are Input Files. C is always the Output File. Every operation requires at least one Input File and an Output File. Thus, every operation will require using tab pages A and C. In those cases where a second Input File (or a constant) is required, tab page B will also be used (see the online Help for detailed descriptions of the individual Math file pages).

With but a few exceptions, the parameters on the three file tab pages are the same. Brief descriptions follow.

Frame: If an input file contains multiple frames, you can specify the ones to be processed. The default is to process all frames. You additionally have the option of choosing not to write all of the frames processed to the Output File.

X and Y Range: You can specify the input file pixels to be processed. The default is to process all pixels. You additionally have the option of restricting the X and Y pixel range data written to the Output File. An alternative way to specify a region is to use the mouse to define the region on the active data display of the input file and then click on Mouse.

Input (Output) Filename: All three tab pages have a field for entering the filename. In each case there is a button at the end of the box which, when pressed, opens a browser to make selecting and specifying filenames and locations as simple as possible. In the case of the B tab page, there is
additionally a field for entering a constant. Radio buttons are provided that activate one or the other of the two fields. Either a constant value or a filename can be entered, but not both.

Data Type: For the A and B tab pages, the data type is reported only and cannot be changed. In the case of the C (output) tab page, you can specify the data type. Data types include:

- **Byte:** 8 bits; only the eight least significant data bits (levels 0 to 255) will be saved.
- **UnInt:** Unsigned integer; 16 bits (0 to 65535)
- **Int:** Signed integer; 16 bits (-32768 to 32767)
- **Long:** Signed integer; 32 bits (-2,147,483,648 to 2,147,483,647)
- **Float:** Floating point; 32 bits (-1.75494351e-38 to 3.402823466 e38)

Display Result: This checkbox appears on the C page only. If checked, the output image will be displayed as soon as the processing is complete.

Operations

On the **Operation** tab page, the math operations are listed as either Linear or Non-Linear. The operand(s) for math operations can be a single file, a file and a constant, or two files. In addition to allowing you to perform these operations on entire files, WinView also allows you to specify the frames (if multi-frame) and a region of interest (ROI).

- When working with a single file, the specified operation is performed on each pixel value of A and the result is written to the corresponding pixel of the Output File, C. The operations available are grouped under the Non-Linear heading:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log10</td>
<td>Absolute Value</td>
</tr>
<tr>
<td>Natural Log</td>
<td>Bitwise Complement</td>
</tr>
<tr>
<td>Square Root</td>
<td>Binary NOT</td>
</tr>
<tr>
<td>Squared</td>
<td></td>
</tr>
</tbody>
</table>

- When working with a single file and a constant, the operation will be performed on each pixel value of A, using the constant specified on the B tab page, and the result is written to the corresponding pixel of the Output File, C. The operations available are grouped under the Linear heading:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition</td>
<td>Min</td>
</tr>
<tr>
<td>Subtraction</td>
<td>Max</td>
</tr>
<tr>
<td>Multiplication</td>
<td>Bitwise AND</td>
</tr>
<tr>
<td>Division</td>
<td>Bitwise OR</td>
</tr>
<tr>
<td>Bitwise Exclusive OR</td>
<td></td>
</tr>
</tbody>
</table>

- When working with two files, corresponding pixels from the two files, A and B, are operated on and the result is written to the corresponding pixel of the Output File, C. The operations that can be performed are the same as for a Single file and Constant described above.
Operation Descriptions

Linear Operations

Addition: The file is added, pixel by pixel, to the file and the results written to the file. It is also possible to add a constant entered on the file tab page to each point on the file, with the results written to the file.

Subtraction: The file is subtracted, pixel by pixel, from the file and the results are written to the new file. It is also possible to subtract a constant entered on the file tab page from each point on the file, with the results written to the file.

Multiplication: The file is multiplied, pixel by pixel, by the file and the results written to the file. It is also possible to multiply each pixel of the file by a constant entered on the file tab page, with the results written to the file.

Division: The file is divided, pixel by pixel, by the file and the results written to the file. It is also possible to divide each pixel of the file by a constant entered on the file tab page, with the results written to the file.

MIN: The file is compared, pixel by pixel, with the file and the smaller of the two values written to the file. It is also possible to compare each pixel of the file with a constant entered on the file tab page, with the smaller of the two values written to the file.

MAX: The file is compared, pixel by pixel, with the file and the larger of the two values written to the file. It is also possible to compare each pixel of the file with a constant entered on the file tab page, with the larger of the two values written to the file.

Non-Linear Operations

Log10: The log10 of the file is computed pixel by pixel and the results written to the file.

Natural Log: The natural log of the file is computed pixel by pixel and the results written to the file.

Square Root: The square root of each point in the file is computed and the result written to the corresponding point of the file.

Squared: Each point in the file is squared and the result written to the corresponding point of the file.

Absolute: The absolute value of each point in the file is computed and the result written to the corresponding point of the file.
Bitwise Operations

AND: A bitwise AND operation is performed on the binary representation of each pixel of the A file and each pixel of the B file, with the result written to the C file. A twelve-bit example follows.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Decimal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel value in A</td>
<td>0 1 0 1 0 1 0 1 0 1</td>
</tr>
<tr>
<td>Corresponding pixel value in B</td>
<td>0 0 0 0 0 0 1 1 1 1 1</td>
</tr>
<tr>
<td>Result written to C</td>
<td>0 0 0 0 0 0 0 1 0 1 0</td>
</tr>
</tbody>
</table>

OR: A bitwise OR operation is performed on the binary representation of each pixel of the A file and each pixel of the B file, with the result written to the C file. An eight-bit example follows.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Decimal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel value in A</td>
<td>0 1 0 1 0 1 0 1</td>
</tr>
<tr>
<td>Corresponding pixel value in B</td>
<td>0 0 0 0 0 0 1 1 1 1 1</td>
</tr>
<tr>
<td>Result written to C</td>
<td>0 1 0 1 0 1 1 1 1 1</td>
</tr>
</tbody>
</table>

Exclusive OR: A bitwise Exclusive OR operation is performed on the binary representation of each pixel of the A file and each pixel of the B file, with the result written to the C file. An eight-bit example follows.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Decimal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel value in A</td>
<td>0 1 0 1 0 1 0 1</td>
</tr>
<tr>
<td>Corresponding pixel value in B</td>
<td>0 0 0 0 0 0 1 1 1 1 1</td>
</tr>
<tr>
<td>Result written to C</td>
<td>0 1 0 1 0 1 1 1</td>
</tr>
</tbody>
</table>

Complement: For each pixel value n in the A file, the corresponding value in the output file C is set to -1-n. Otherwise stated, each 0 becomes a 1 and each 1 a 0.

Binary Operations

NOT: For each pixel in the A file, all non-zero values yield a zero, and all zero values (only) yield a one. The resulting values are written to the corresponding point of the C file.
Procedure

1. Select the operation to be performed on the Operation tab page.
2. Enter the first input filename on the A tab page.
3. If the operation involves two files or one file and a constant, enter the second file name on the B tab page or enter the value of the constant on the B tab page.
4. If you want to process only part of the input images, change the Frame, X Range, and Y Range values on the A tab page, and also on the B tab page if two files are involved. Alternatively, use the mouse to draw an ROI in the active window and click the Mouse button at the bottom of the dialog box to enter those values.
5. Enter the name of the output file on the C tab page. If you want to restrict the output data range, change the Frame, X Range, and Y Range values as appropriate.
6. Select the output file datatype.
7. If you want the output file to be displayed as soon as the processing is complete, check the Display Result box.
8. Click on OK to begin processing, or Cancel to cancel the operation.
This page intentionally left blank.
Chapter 10

Post-Acquisition Mask Processes

Introduction

Several post-acquisition mask processes, including Edge Enhancement, Sharpening, Smoothing, a Custom Filter and Morphological Erode and Dilation operations, are provided in the WinView/32 software. These processes all use the same Input and Output tab pages but have unique Parameters tab pages. Since the Input and Output functionality is identical for all of these processes, the Input and Output tab pages are described below. The Parameters tab pages are described in the appropriate sections.

![Input tab page](Figure 97)

Input tab page
The Input tab page (Figure 97) selects the data to be operated on. You can specify the data file, the frames within the file, and the X and Y range on the CCD. The input data-type is reported. Note that the Mouse button at the bottom of the window allows you to use the mouse to specify the region to be processed. Simply drag a box in the data region of the active window and then click on Mouse. The Frame and Range parameters will assume the values of the defined region. The **Mouse** button is only active when the Input tab page is selected.

![Output tab page](Figure 98)

Output tab page
The Output tab page (Figure 98) allows you to name the output file. It additionally allows you to select whether the modified data is to be displayed and to select the data type. The frame and X-Y range are reported information only.
Edge Enhancement

Parameters tab page
Edge enhancement is accomplished by mask operations defined by parameters entered on the Parameters tab page. These functions can enhance edges, sharpen or smooth features, or erode or dilate an image. How these images are processed is briefly described below.

A mask is an $n \times n$ matrix (n is 3 for all WinView/32 operations) that is placed over every $n \times n$ subsection of the image. Each parameter in the mask is multiplied by the corresponding value of the image. The results are summed and placed in the central position in the output file. An example will help illustrate the process.

The following is the Laplacian 1 mask, used to enhance edges.

<table>
<thead>
<tr>
<th>-1</th>
<th>-1</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>8</td>
<td>-1</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Here is an example of a 3×3 subsection of an image. The middle pixel has the coordinates 100, 100.

<table>
<thead>
<tr>
<th>20</th>
<th>20</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>20</td>
</tr>
</tbody>
</table>

Multiply each pair of corresponding numbers, and sum the products.

$$(-1 \times 20) + (-1 \times 20) + (-1 \times 19) + (-1 \times 20) +
(8 \times 21) + (-1 \times 20) + (-1 \times 20) + (-1 \times 19) + (-1 \times 20) = 10$$

The result is placed at position 100, 100 in the output image file. The mask is now placed over the 9 pixels centered at 101, 100, and the procedure is repeated.
Laplacian Masks
The three Laplacian masks on the Edge Enhancement dialog box operate just as described above. Since the sum of the mask coefficients of the Laplacians sum to zero, the result of a Laplacian operation on a region of uniform density is zero. Boundary features are enhanced by varying degrees.

Sobel Edge Detection
The Sobel edge detection method is more involved, but produces greatly enhanced features. Number the squares of the subregion of the image as follows:

<table>
<thead>
<tr>
<th></th>
<th>A₀</th>
<th>A₁</th>
<th>A₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₇</td>
<td></td>
<td>A₃</td>
<td></td>
</tr>
<tr>
<td>A₆</td>
<td>A₅</td>
<td>A₄</td>
<td></td>
</tr>
</tbody>
</table>

The replacement for the center cell, called R, is¹

\[R = \sqrt{X^2 + Y^2} \]

where

\[X = (A₂ + 2A₃ + A₄) - (A₀ + 2A₇ + A₆) \]
\[Y = (A₀ + 2A₁ + A₂) - (A₆ + 2A₅ + A₄) \]

Figure 100 illustrates the effect of edge detection on an image.

Figure 100. Original Image (left) and Edge-detected Image (right)

Edge Enhancement Procedure
Use the following procedure to perform Edge Enhancement on an image.

1. Select **Edge Enhancement** from the Process menu.
2. Enter the Input Image and Output Image names.
3. On the **Input** tab page, select the data frame containing the data on which the operation is to be performed.

4. If you want to process only part of the Input Image, enter the appropriate X-Y range values. Alternatively, use the mouse to draw an ROI in the active window and click the Mouse button at the bottom of the dialog box to enter those values.

5. Select one of the Operations. Since image features vary widely, it is best to simply try the different operations to determine the best one.

6. To set a specialized 3×3 mask, select User Defined and change the Kernel parameters to their new values.

7. Click on Apply to begin processing.

Sharpening Functions

Parameters tab page

Sharpening is also accomplished by mask operations, in this case parameters entered on the Sharpening Parameters tab page. These masks, sometimes called high pass filters, enhance regions of high contrast while not affecting regions of low contrast.

Sharpening Procedure

Use the following procedure to sharpen an image.

1. Select Sharpening from the Process menu.

2. Enter the Input Image and Output Image names.

3. On the Input tab page, select the data frame containing the data on which the operation is to be performed.

4. If you want to process only part of the Input Image, enter the appropriate X-Y range values. Alternatively, use the mouse to draw an ROI in the active window and click the Mouse button at the bottom of the dialog box to enter those values.

5. Select one of the Operations. Since image features vary widely, it is best to simply try the different operations to determine the best one.

6. To set a specialized 3×3 mask, select User Defined and change the Kernel parameters to their new values.

7. Click on Apply to begin processing.
Smoothing Functions

Parameters tab page
Smoothing is also accomplished by mask operations, in this case parameters entered on the Smoothing Parameters tab page (Figure 103). These masks, sometimes called low pass filters, attenuate regions with high contrast, while leaving pixels in regions of low contrast almost unchanged. Figure 102 illustrates the smoothing filter effect.

![Figure 102. Original Image (left) and Smoothed Image (right)](image)

Figure 103. Smoothing Parameters tab page

Smoothing Procedure
Use the following procedure to smooth an image.

1. Select **Smoothing** from the Process menu.
2. Enter the Input Image and Output Image names.
3. On the **Input** tab page, select the data frame containing the data on which the operation is to be performed.
4. If you want to process only part of the Input Image, enter the appropriate X-Y range values. Alternatively, use the mouse to draw an ROI in the active window and click the **Mouse** button at the bottom of the dialog box to enter those values.
5. Select one of the Operations. Since image features vary widely, it is best to simply try the different operations to determine the best one.
6. To set a specialized 3×3 mask, select User Defined and change the Kernel parameters to their new values.
7. Click on **Apply** to begin processing.
Morphological Functions

Parameters tab page
Morphological operations are also accomplished by mask operations, in this case parameters entered on the Morphological Parameters tab page. There are two basic morphological mask operations, Erode and Dilate. The effect of the Erode process is to reduce the size of a white region, while Dilation increases it. All the options except for Block and User Defined perform the operation in a specific direction only. Block performs the operation in all directions.

Note: Depending on the software version, Iterations and the Open and Close functions may be grayed out as in Figure 104. If these features are not grayed out, Open is a number of erodes (specified by Iterations) followed by the same number of dilates. Close performs the dilates first and then the erodes.

Examples of some morphological operations follow. References are found at the end of this chapter. In each case the same binary image is shown to the left and the morphologically processed image is shown to the right.

![Figure 104. Morphological Parameters tab page](image)

Figure 104. Morphological Parameters tab page

![Figure 105. Original Image (left) and Dilated Image (right)](image)

Figure 105. Original Image (left) and Dilated Image (right)

![Figure 106. Original Image (left) and Eroded Image (right)](image)

Figure 106. Original Image (left) and Eroded Image (right)
Morphological Procedure

Use the following procedure to morphologically process an image.

1. Select **Morphological** from the Process menu.

2. Enter the Input Image and Output Image names.

3. On the **Input** tab page, select the data frame containing the data on which the operation is to be performed.

4. If you want to process only part of the Input Image, enter the appropriate X-Y range values. Alternatively, use the mouse to draw an ROI in the active window and click the **Mouse** button at the bottom of the dialog box to enter those values.

5. Select the desired Mask Type and Mask Operation.

6. To set a specialized 3×3 mask, select User Defined and change the Kernel parameters to their new values.

7. Click on **Apply** to begin processing.
Custom Filter

Filter Matrix tab page

The Custom Filter|Filter Matrix tab page allows you to set the filter matrix parameter values. The filter is applied to the dataset specified via the Input tab page (page 109). The processed data is saved in the file specified by the Output tab page (page 109).

Filtering is accomplished by mask operations defined by parameters entered in the matrix. These functions can enhance edges, sharpen or smooth features, or erode or dilate an image. How these images are processed is briefly described below.

A mask is an $n \times n$ matrix (n is 5, 7, 9 or 11) that is placed over every $n \times n$ subsection of the image. Each parameter in the mask is multiplied by the corresponding value of the image. The results are summed and placed in the central position in the output file. Users can specify the Filter Size (5×5, 7×7, 9×9 or 11×11). The Filter Sum is displayed in the adjacent box.

The Load Defaults button sets the matrix parameters to their factory-default values. When you click on this button, you will see a warning message "Will erase Data for ALL Filter Sizes; Continue?" with Yes/No. "Yes" will erase ALL filter data before loading the factory default values.

Custom Filter Procedure

Use the following procedure to apply a custom filter to an image.

1. Select Custom Filter from the Process menu.
2. Enter the Input Image and Output Image names.
3. On the Input tab page, select the data frame containing the data on which the operation is to be performed.
4. If you want to process only part of the Input Image, enter the appropriate X-Y range values. Alternatively, use the mouse to draw an ROI in the active window and click the Mouse button at the bottom of the dialog box to enter those values.
5. Define the filter by entering the appropriate values in the Filter Matrix.
6. Click on Apply to begin processing.
Look Up Table

Look Up Table tab page
The Look Up Table function uses an ASCII text file, provided by the user, to translate pixel intensities from an input file into different intensities in an output file. The input file must be a raw data file (unsigned 16-bit image) since the Look Up Table mapping assumes a 0-65536 range of intensity values in the input file. The map file is a previously created text file (refer to pages 118 and 119 for descriptions of the LUT formats) that must be converted to a binary map file for the actual operation. After the text file is selected, clicking on the **Create Binary LUT** button converts the text information to binary format. Clicking on **Apply** then remaps the image intensities and redraws the data display window appropriately.

Look Up Table Procedure
Use the following procedure to process data using the LUT.

1. Select **Look Up Table** from the Process menu.
2. Using the **Input** and **Output** tab pages, enter the Input and Output file names.
3. On the **Input** tab page, select the data frame containing the data on which the operation is to be performed.
4. If you want to process only part of the Input Image, enter the appropriate X-Y range values. Alternatively, use the mouse to draw an ROI in the active window and click the **Mouse** button at the bottom of the dialog box to enter those values.
5. Load the LUT. **LUT files must be of the type *.TXT**. The file name can be entered directly or selected by using the browser (clicking on the button at the end of the field opens the browser).
6. Click on the **Create Binary LUT** button to convert the text-LUT to binary.
7. Click on **Apply** to begin convert the input data values to the output values specified per the LUT.
Look Up Table Formats

The contents of a look-up table text file are entered using an ASCII text editor and the file is saved with a .TXT extension. The format used within the file depends on the type of remapping: one-to-one remapping of intensity levels or a user-defined selection of input to output values.

Format 1

This format is for a one-to-one mapping of intensity levels. Imin and Imax (the minimum and maximum input levels, inclusive) are supplied in the first line with a comma delimiter. The subsequent values are supplied one output value per line. The mapping assumes that all of the input intensities in the specified range are represented by an output value. Therefore, the number of output values in the text file must cover the range [(Imax-Imin) + 1]. Input levels below Imin are mapped to the value of Ofirst and input levels above Imax are mapped to the value of Olast.

<table>
<thead>
<tr>
<th></th>
<th>Ofirst</th>
<th>O2</th>
<th>O3</th>
<th>O4</th>
<th>.</th>
<th>.</th>
<th>.</th>
<th>Olast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imin,Imax</td>
<td>Imin,Imax represents inclusive input range to be remapped</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ofirst</td>
<td>Ofirst is the output value for Imin (or I1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2</td>
<td>O2 is the output value for I2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O3</td>
<td>O3 is the output value for I3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4</td>
<td>O4 is the output value for I4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olast</td>
<td>Olast is the output value for Imax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example: The following example is for a one-to-one mapping. As stated previously, the entries after Imin and Imax are output levels. Based on the Imin and Imax values, there are 5 output values [(7-3) +1]. In this example, every input intensity less than 3 (Imin) gets mapped to 20, 3 (Imin) is mapped to 20, 7 (Imax) is mapped to 10, and every input intensity greater than 7 (Imax) is mapped to 10 (Olast). Input intensities 4, 5, and 6 are mapped to 22, 23, and 26 respectively.

| 3,7 |
| 20 |
| 22 |
| 23 |
| 26 |
| 10 |
Format 2

This format is not a one-to-one mapping in that input intensities between Imin and Imax, inclusive, can be omitted from the list of In,Out pairs. Imin and Imax (the minimum and maximum input levels, inclusive) are supplied in the first line with a comma delimiter. This format expects an arbitrary number of entries in the form of In,Out and the In,Out pairs may be listed in any order. The In value must be between Imin and Imax, inclusive. Anything less than Imin is mapped to the first Input mapping. Anything greater than Imax gets mapped the output value of the last In,Out pair. Any input value not specified in an In,Out pair is mapped to zero.

<table>
<thead>
<tr>
<th>Imin,Imax</th>
<th>Imin,Imax represents inclusive input range to be remapped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ifirst,Ofirst</td>
<td>Ofirst is the output value for Ifirst and for any intensity < Imin</td>
</tr>
<tr>
<td>I,O</td>
<td>I is the input value and O is the output value</td>
</tr>
<tr>
<td>I,O</td>
<td>O3 is the output value for I3</td>
</tr>
<tr>
<td>I,O</td>
<td>O4 is the output value for I4</td>
</tr>
<tr>
<td></td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>.</td>
</tr>
<tr>
<td>Ilast,Olast</td>
<td>Olast is the output value for Ilast and for any intensity > Imax</td>
</tr>
</tbody>
</table>

Example: The following is a custom mapping. As stated previously, the entries after Imin and Imax represent are input,output levels. Imin and Imax are 3 and 7 respectively. Everything less than 3 gets mapped to 13 (the first In,Out mapping). Everything greater than 7 gets mapped to 12 (the last In,Out mapping). Since input values 3 and 4 are not represented in an In,Out pair, these intensities will be mapped to 0.

```
3,7
6,13
5,11
7,12
```

References

To explore in further detail the theory and techniques of digital image processing, we suggest the following texts:

Introduction

The processes included in this chapter are accessible from Processes menu. These processes all use the same Input and Output tab pages but have unique Parameters tab pages. Since the Input and Output functionality is identical for all of these processes, the Input and Output tab pages are described below. The Parameters tab pages are described in the appropriate sections.

Input tab page
The Input tab page (Figure 110) selects the data to be operated on. You can specify the data file, the frames within the file, and the X and Y range on the CCD. The input data-type is reported. Note that the Mouse button at the bottom of the window allows you to use the mouse to specify the region to be processed. Simply drag a box in the data region of the active window and then click on Mouse. The Frame and Range parameters will assume the values of the defined region. The Mouse button is only active when the Input tab page is selected.

Output tab page
The Output tab page (Figure 111) allows you to name the output file. It additionally allows you to select whether the modified data is to be displayed and to select the data type. The frame and X-Y range are reported information only.
Threshold and Clipping

Clipping an image causes pixels outside the specified range to be changed. When **Clip High** is selected, all pixels with values greater than the Clip High value will be changed to the Clip High value. When **Clip Low** is selected, all pixels with values less than the Clip Low value will be changed to the Clip Low value. Selecting **Clip Both** will use both Clip High and Clip low values during the same processing step.

The **Threshold** function converts an image to binary (black and white). All intensity values below the threshold setting are zero (black). All those above become ones (white).

Procedure
1. Select **Clipping/Threshold** from the Process menu.
2. On the **Input** tab page, if the correct input image does not appear in the Input Image box, enter the complete file name or search for a file using the browser, accessed by the button to the right of the field.
3. On the **Input** tab page, select the data frame containing the data on which the operation is to be performed.
4. If you want to process only part of the Input Image, enter the appropriate X-Y range values. Alternatively, use the mouse to draw an ROI in the active window and click the **Mouse** button at the bottom of the dialog box to enter those values.
5. On the **Parameters** tab page, if a clipping operation is to be performed, select the clipping option as described above. For a threshold operation, set the threshold level to the desired value.
6. Enter the name of the Output Image on the **Output** tab page. *In later editions of the software, it will additionally be possible to specify an output frame and data range.*
7. Click on **Apply** to begin processing.
Cross Section

Introduction
Selecting Cross Section on the Process menu opens the Cross Section window, which allows you to separately display and store horizontal and vertical cross sections of an image. Figure 113 shows two X-axis cross sections based on the same ROI. The upper data is averaged; the lower data is summed.

![Figure 113. Example Cross Sections of an ROI](image)

Procedure
1. Select Cross Section from the Process menu.
2. On the Input tab page, if the correct input image does not appear in the Input Image box, enter the complete file name or search for a file using the browser, accessed by the button to the right of the field.
3. On the Input tab page, select the data frame containing the data on which the operation is to be performed.
4. If you want to process only part of the Input Image, enter the appropriate X-Y range values. Alternatively, draw an ROI in the active window using the mouse and click the Mouse button at the bottom of the dialog box to enter those values.
5. On the Parameters tab page, select either Sum or Average. If Sum is selected, all pixel values in the X, Y, or Z direction, according to whether X-Cross Section, Y-Cross Section or Z-Cross Section is selected, will be summed to generate the output. If Average is selected, the average of all of the pixel values in the X, Y, or Z direction will be summed to produce the output.

![Figure 114. Cross Section Parameters tab page](image)
6. On the Parameters tab page, select **X-Cross Section, Y-Cross Section** or **Z-Cross Section**, whichever is wanted.

7. Enter the name of the Output file on the **Output** tab page. *In later editions of the software, it will additionally be possible to specify an output frame and data range.*

8. Click on **Apply** to begin processing.

Binning and Skipping

Introduction

Selecting **Binning** on the Process menu opens the Binning and Skipping window, which allows binning to be accomplished in software after the data has been collected. The Parameters tab page allows the bin size to be set independently in the X and Y directions. The Skipping parameter allows you to define the interval between binned regions. The Skipping parameter size can be independently set for X and Y. There is also provision for either averaging or summing the binned data points. If Average is selected, each output data value will be the average of the binned data values in each region. If Average is unselected, each output data value will be the sum of the binned data values. The procedure follows.

Procedure

1. Select **Binning and Skipping** from the Process menu.

2. On the **Input** tab page, if the correct input image does not appear in the Input Image box, enter the complete file name or search for a file using the browser, accessed by the button to the right of the field.

3. On the **Input** tab page, select the data frame containing the data on which the operation is to be performed.

4. If you want to process only part of the Input Image, enter the appropriate X-Y range values. Alternatively, use the mouse to draw an ROI in the active window and click the **Mouse** button at the bottom of the dialog box to enter those values.

5. On the **Parameters** tab page, set the X and Y bin size.

6. On the Parameters tab page, select **Average** if the binned data values are to be averaged. If the Average box is left unchecked, the binned values will be summed.

7. On the Parameters tab page, set the Skip X and Y values. Data points that fall in the skip zones do not contribute to the output. Skip values of zero are allowable, that is, no points will be skipped. Leftover points at the end of a strip or column are discarded.

8. Enter the name of the Output file on the **Output** tab page. *In later editions of the software, it will additionally be possible to specify an output frame and data range.*
9. Click on **Apply** to begin processing.

Restrictions and Limitations

The following are some restrictions and limitations of the Binning and Skipping function.

- This function can resize an image down to a minimum of 1 pixel but WinView/32 cannot display an image less than 2 x 2 pixels.

- May cause data overflow in the output image if the output data type is selected as “integer”. If data to be binned will exceed 32,000 counts, select Unint or Long.

- The maximum binning and skipping size is the size of the input image. When the maximum is reached, to increase the binning size you must first decrease the skipping size, then increase the binning size.
Histogram Calculation

Introduction
Two types of histograms are available for graphing the distribution of intensities of an image. The **Histogram** operation groups pixels of a similar intensity together. The X-axis indicates the intensity, and the Y-axis displays the number of pixels in that intensity range.

The **Cumulative Histogram** operation groups pixels of a similar intensity together, once again using the X-axis to show intensity. This time, however, the Y-axis indicates the total number of pixels with intensity less than or equal to the range. Thus the Cumulative Histogram is always an increasing function.

Procedure
1. Select **Histogram** from the Process menu.
2. On the **Input** tab page, if the correct input image does not appear in the Input Image box, enter the complete file name or search for a file using the browser, accessed by the button to the right of the field.
3. On the **Input** tab page, select the data frame containing the data on which the operation is to be performed.
4. If you want to process only part of the Input Image, enter the appropriate X-Y range values. Alternatively, use the mouse to draw an ROI in the active window and click the **Mouse** button at the bottom of the dialog box to enter those values.
5. On the **Parameters** tab page, select either **Histogram** or **Cumulative Histogram**, whichever is wanted.
6. On the Parameters tab page, under **Values**, enter the **Low Intensity** and **High Intensity** values. These are the Y-Max and Y-min. Then enter the **Group Size**, which is the range of intensity that the software will group together as a single data point. In other words, if the Group Size is 50, pixels having intensities in the range of 1-50 will be counted and graphed as a single point on the histogram.
7. Enter the name of the Output file on the **Output** tab page. *In later editions of the software, it will additionally be possible to specify an output frame and data range.*
8. Click on **Apply** to begin processing.
Chapter 12

Printing

Introduction

WinView/32 can be used to print images directly. Methods are listed below both for direct printing and for using the clipboard to transfer the image to another program for printing.

Setting up the Printer

1. Open the file you want to print. Make sure that window is the active one. From the File menu, open the Print Setup dialog box (Figure 117).

2. The Print Setup dialog box is similar to that found in many Windows programs. You can use the default printer or select a specific printer from the list of installed devices. For information on installing printer drivers, consult the Windows documentation. The Options button shows more features of the selected printer driver – again, a standard Windows feature.

3. Select the Paper Size and Source. The Landscape format (where the paper is wider than it is tall) is probably the best way to print out data.

4. Click on OK to execute the printer setup selections or Cancel to exit the dialog leaving the original settings unchanged.
Printing Directly from WinView/32

This procedure assumes you have already set up the printer you will be using.

1. From the File menu, open the Print dialog box (Figure 118).
2. Select the number of copies and pages (if a file contains multiple frames, each will be printed as a separate page).
3. Click on OK to initiate the print.

Notes:

1. Once the Print Setup is properly configured, you can print the active window simply by selecting Print from the File menu (shortcut Alt, F, P) or by clicking on the Print button in the standard toolbar.
2. Color mapping to the printer may differ from that shown on the screen. To obtain the desired output color mapping, you may wish to do a screen capture and then paste the image into a graphics program for final adjustment before printing.

Print Preview

The Print Preview function gives you a quick idea of how the printed image will look. It produces an “on-screen print” that looks as closely as possible like a “real” print, allowing changes in the printer setup to be made quickly and conveniently. Figure 119 illustrates the Print Preview window.
The button functions are as follows.

Print...: Opens the Print screen so a print can be initiated.

Next Page: If the file contains multiple frames, each one will occupy a different page. The Next Page button allows you to step forward sequentially through all available pages. If the file contains only one image, the Next Page button will be grayed out.

Prev Page: Allows you to step backwards sequentially through the pages of a multiple image file.

Two Page: Causes two pages to be displayed at a time in a side-by-side layout.

Zoom In: Allows you to zoom in on the previewed page, allowing a selected area to be examined in detail. There are two zoom levels. Note that, if not at full zoom, the cursor becomes a “magnifying glass” if positioned on the image area.

Zoom Out: Allows you to return to the normal (unzoomed) preview display.

Close: Closes the Preview window and returns you to the normal WinView/32 display.

Printing a Screen Capture

It is also possible to do a screen capture of the entire WinView/32 window. This is the best way to capture such information as cross sections, scaling, and color lookup tables. A limitation of screen shots is that the resulting image is based on the resolution of the monitor, not the resolution of the image. For a 1 million pixel CCD, even a 600 × 800 video mode is not enough to show all the pixel information.

1. Display the desired image or images in WinView/32. Click once on the title bar of WinView/32 to make this the active window.

2. Press **Alt + Print Screen**. This copies the entire contents of the WinView/32 window, including image or graph displays and dialog windows, to the clipboard.

 Note: Alternatively, press **Ctrl+C** or select Copy on the Edit menu to copy an image to the clipboard. *This function only works on image displays and only on the image itself (i.e., scales and cross section information is not transferred). However, it has an advantage in that the full resolution of the image is retained.*

Many text editors and graphics programs allow images to be pasted directly from the clipboard. Paint Shop Pro, a shareware program, is one example of an inexpensive program that can edit and save clipboard screen shots.

1. Open the application. Open a new file within that application.

2. Select **Paste** from the Edit menu. This will place the contents of the clipboard into the application. If the image seems cut off, try opening a bigger blank image before pasting the clipboard. The image is now an 8-bit color or grayscale image.

3. Crop the image, if desired. This feature is available in almost any image editing program.

4. Select **Print** from the File menu. Print the file.

5. Save the file, if desired. TIFF is an excellent image format for either grayscale or color shots.

 Note: Screen-capture images lose the high dynamic range of the original. The Copy function (**Ctrl+C**) retains the full resolution of the data file.
Saving as TIF and Printing

It is also possible to save an image file directly to 8-bit Tif or 16-bit TIFF format by using the Save As function on the File menu. The resulting file could then be copied to a graphics editing program for further processing and then printed.

Images saved as 8-bit Tif can be opened with a variety of programs (for example, Imaging for Windows® (Kodak), Microsoft® Paint, Jasc® Paint Shop Pro®, or Adobe® Photoshop®). The 16-bit TIFF format is not as widely supported. Images saved in this format can be opened and processed with Adobe Photoshop.
Chapter 13

Pulser Operation

Introduction

Three different pulser/timing generators are available for use with WinView/32. To be available, pulser support must have been installed as described in the Installation chapter. Pulser support is then accessed by selecting **Pulsers** on the **Setup** menu and then selecting the pulser to be used with the system. Available selections include the Princeton Instruments PG200 Pulser, the Princeton Instruments Programmable Timing Generator (PTG) plug-in module for the ST-133 (high power ver. 3+) and the Stanford Research Systems DG535 Digital Delay/Pulse Generator with Inhibit Option.

The Model PG200 is available for all Princeton Instruments intensified cameras except the PI-MAX Intensified CCD Camera, which requires the PTG or DG535. All three pulser/timing generators are programmable from WinView/32. Consult the applicable hardware manuals for detailed instructions on setup and connection to other devices.

PG200 Programmable Pulse Generator

The PG200 is programmed via one of the serial ports of the computer, such as COM1 or COM2. The choices provided by the tab pages are the same ones that are available using the PG200 front panel. Basic PG200 operation is reviewed in the following procedure.

1. Make sure the PG200 is connected to one of the serial ports of the computer. Later you will tell WinView/32 the name of this port (COM1, COM2, etc.). The software cannot automatically detect the location of the PG200.

2. Following the intensifier precautions listed in the hardware manuals, turn on the PG200 Pulser and wait for it to initialize. If the PG200 isn’t turned on, the WinView/32 software cannot program it.

3. Select **Setup**, then **Pulsers**, then **PG200**. Then click on the **Setup PG200** button to open the PG200 dialog. *If PG200 is grayed out on the Pulsers dialog box, PG200 pulser support has not been installed.*

4. Click on the **Comm Port** tab.

5. Select the Comm Port type, **Serial** or **Demo, Serial** must be selected to control the PG200.
6. Select the PG200 Comm Port. Generally, the mouse is connected to COM1 and the Pulser is connected to COM2. COM ports 1 through 8 can be selected.

7. Once you have selected the correct port, click on Initialize Port, which will cause the software to search for the pulser. If it can’t find the pulser on the specified port, such as would occur if the pulser were not turned on or if it were connected to a different port, you will get an error message. If this happens, check the cable connections, check that the pulser is powered, or try a different Comm port.

8. Click on the Triggers tab (Figure 122).

9. Select the Trigger mode, either Internal, in which the PG200 free runs, or External, in which it is triggered from an external source.

10. If operating in the Internal trigger mode, set the Trigger Frequency in Hz. Consult the PG200 Manual to determine the maximum Trigger Frequency for a given set of conditions.

The PG200 Delay Trigger and Auxiliary Trigger outputs, are programmed from the Triggers tab page. They produce trigger outputs that are synchronized to and delayed from the trigger (Trigger Sync mode) or from the trailing edge of the gate pulse (Gate Sync mode). In the Gate Sync mode, as the gate pulse changes its position and width, the trigger outputs remain synchronized with the gate, moving with it. In the Trigger Sync mode, the trigger outputs do not sweep with the gate but maintain their initial position. The Delayed Trigger and Auxiliary Trigger outputs are independently programmable.
Programming the Delayed Trigger and Auxiliary Trigger Outputs

1. Set the Delay Trigger and Aux Trigger initial delay.

2. Set the Delay Trigger output to be synchronized to either the Trigger or the Gate pulse.

3. Set the Aux Trigger output to be synchronized to either the Trigger or the Gate pulse.

4. Click on the Gating tab (Figure 123).

5. Select Repetitive or Sequential and then click on the adjacent Setup button. For safety, the Gating Mode (HV Pulsing) selection should be Disabled.

Note: In setting the PG200 gating parameters, whether for Repetitive or Sequential operation, see your PG200 Manual for pulse width and delay limitations. Note that gate pulses are capacitively coupled in many Princeton Instruments intensified camera heads, so high duty cycles and gate widths longer than 1 ms may lead to reduced gating efficiency.

Repetitive Mode

If Repetitive is selected, the Repetitive Gating setup dialog box will appear as shown in Figure 124. In the Repetitive gating mode, the Gate Width and Gate Delay remain constant over the course of the measurement. Set the Gate Width and Gate Delay to the desired values and click on OK. The Repetitive Gating Setup dialog box will close and you will return to the PG200 dialog box.

Sequential Mode

If Sequential is selected, the Sequential Gating Setup dialog box will appear as shown in Figure 125. In the Sequential Gating mode, the Gate Width and Gate Delay do not remain constant but change either linearly (Fixed) or exponentially as the measurement progresses. Fixed is suited to sweeping over a time interval to locate and recover an event that takes place at the same time with each iteration. Exponential is well suited to fluorescence decay experiments where the effect under study changes rapidly at the start of an experiment and then slower and slower, following a logarithmic curve, as the experiment progresses.

If the measurement is to be done in the sequential gating mode, set the pulsing parameters as appropriate for your intended measurement and click on OK. The Sequential Gating Setup dialog box will close and you will return to the PG200 dialog box.
1. Click on the Gating tab.

2. Select Gating Mode (HV Pulsing) Enabled to start gating the intensifier. Be sure you have followed all intensifier precautions stated in the hardware manuals before making this selection.

3. Click the Apply Changed Settings button. This writes all changed parameters to the PG200. It may take several seconds, depending on the number of parameters that have been changed. To set all of the parameters, click on the Apply All Settings button.

4. Click on OK to close the dialog box.
Programmable Timing Generator (PTG)

Unlike the PG200 and the DG535, the PTG is not a free-standing instrument but rather a plug-in module designed for installation in a special version of the ST-133 Controller. This novel and highly integrated approach to timing generator design, with its advanced high-speed electronics, low insertion delay and programmable functions, achieves superior performance as the ultimate gate controller for the PI-MAX Intensified Camera.

Basic PTG operation is reviewed in the following procedure. The individual tab page selections are discussed in detail in the online Help topics.

Note: The gate functions of the PI-MAX camera are controlled by the PTG. If the system is equipped with a PI-MAX camera, the Camera State dialog box (Figure 126) will appear when the software is started. Although the software always initially places the PI-MAX in Safe mode, you have the option of restarting with the last setting (Shutter Mode or Gate Mode).

1. Following the intensifier precautions stated in the hardware manuals, turn on the Controller (PTG installed). If the Controller isn’t turned on, the WinView/32 software won’t be able to control the PTG.

2. On the Setup menu select Pulsers to open the Pulsers dialog box.

3. Select PTG. Then click on the Setup Pulser button. The PTG dialog box (Figure 128) will open. If PTG is grayed out on the Pulsers dialog box, PTG support has not been installed.
4. Select the Trigger mode, either **Internal**, in which the PTG free runs, or **External**, in which it is triggered from an external source.

5. If operating in the **Internal** trigger mode, set the trigger **Frequency** in Hz.

6. If operating in the **External** trigger mode, specify the **Threshold**, **Slope**, **Coupling** and **Impedance** appropriate for the trigger source.

7. Click on the **Gating** tab (Figure 129).

8. Select **Bracket Pulsing On** or **Off**.

 Note: Bracket pulsing is only useful in low duty factor gated measurements in the UV with the PI-MAX camera. See your PI-MAX system manual for detailed information.

9. If you select Bracket Pulsing **ON**, next select Anticipator **ON** or **OFF**. If **ON** is selected, then set the Anticipator time.

 Note: The Anticipator allows Bracket Pulsing with repetitive external trigger sources. The Anticipator measures the trigger period and then turns on the bracketing pulse timed to lead the photocathode gate pulse by the set interval. For proper operation, the bracketing pulse must begin at least 500 ns before the gate pulse.

 The minimum Anticipator Time is 500 ns (or the minimum PI-MAX bracket lead time from EEPROM) **minus** the minimum Gate Delay time. For example, with a minimum Gate Delay time of 200 ns, the software would automatically set the Anticipator time to 300 ns.

10. For Burst operation, in which each trigger initiates a burst of gate pulses, select Burst Mode **ON** and set the number of pulses in the burst and their period.

 Note: If bracket pulsing and Burst Mode are both selected, the entire burst will be bracketed but not the individual pulses within a burst.

11. Select **Repetitive** or **Sequential** and then click on the adjacent **Setup** button.
Repetitive Mode

If Repetitive is selected, the Repetitive Gating setup dialog box will appear as shown in Figure 130. In the Repetitive gating mode, the Gate Width and Gate Delay remain constant over the course of the measurement. If operating in the Repetitive Gating mode, simply set the Gate Width and Gate Delay to the desired values and click on **OK**. The Repetitive Gating Setup dialog box will close and you will return to the PTG dialog box.

![Repetitive Gating Setup](image)

Sequential Mode

If Sequential is selected, the Sequential Gating Setup dialog box will appear as shown in Figure 131. In the Sequential Gating mode, the Gate Width and Gate Delay do not remain constant but change either linearly (**Fixed**) or exponentially as the measurement progresses.

Fixed is suited to sweeping over a time interval to locate and recover an event that takes place at the same time with each iteration. **Exponential** is well suited to fluorescence decay experiments where the effect under study changes rapidly at the start of an experiment and then slower and slower, following a logarithmic curve, as the experiment progresses. Refer to the online help for a detailed discussion of the Sequential Gating setup parameters. In any case, if the measurement is to be done in the sequential gating mode, set the gating parameters as appropriate for your
intended measurement and click on OK. The Sequential Gating Setup dialog box will close and you return to the PTG dialog box.

12. Click the OK button. This writes all of the parameter values to the PTG.

Note: The PTG can also be controlled interactively as data is being collected. For more information, see the discussion of this feature starting on page 145.

DG535 Digital Delay/Pulse Generator

The DG535 is programmed via the IEEE-488 GPIB port of the computer (default GPIB address is 15). The choices provided by the tab pages are the same ones that are available using the DG535 front panel. Basic DG535 operation is reviewed in the following procedure. The individual tab page selections are discussed in detail in the online Help topics.

Note: The DG535 is used to control the PI-MAX gate functions. If the system is equipped with a PI-MAX camera, the Camera State dialog box (Figure 132) will appear when the software is started. Although the software always initially places the PI-MAX in Safe mode, you have the option of restarting with the last setting (Shutter Mode or Gate Mode).

1. Make sure the DG535 is connected to the computer’s IEEE-488 GPIB port. Later you will tell WinView/32 the DG535’s GPIB address. The default setting is 15.

2. Following all intensifier precautions listed in the hardware manuals, turn on the DG535 and wait for it to initialize. If the DG535 isn’t turned on, the WinView/32 software won’t be able to program it.

3. Select **Setup** and then **Pulsers** to open the Pulsers dialog box.

4. Select **DG535**. Then click on the **Setup DG535** button. The DG535 dialog box will open.

![Figure 132. Camera State dialog box](image)

![Figure 133. DG535 dialog box](image)
5. Click on the **Comm Port** tab (Figure 134).

6. For the Port Type select GPIB. Then set the **Port Address** to the GPIB address of the DG535. *Default setting is 15.*

7. Once you have selected the correct port address, click on **Initialize Port**. If the software cannot find the pulser on this port, such as if the pulser is not turned on or if the address setting is incorrect, you will get an error message. If this happens, check the address, check the cable connections and check that the pulser is powered.

8. Click on the **Triggers** tab (Figure 135).

9. Select the Trigger mode, either **Internal**, in which the DG535 free runs, or **External**, in which it is triggered from an external source.

10. If operating in the **Internal** trigger mode, set the **Trigger Frequency** in Hz. Consult the DG535 Manual to determine the maximum Trigger Frequency that can be used in your application.

11. If operating in the **External** trigger mode, specify the **Slope**, **Threshold**, and **Termination** appropriate for the trigger source.
12. Click on the Gating tab to bring the Gating tab page to the front.

13. Select Bracket Pulsing On or Off.

 Note: Bracket pulsing is only useful in low duty factor gated measurements in the UV with the PI-MAX camera. See your PI-MAX manual for detailed information.

14. Select Repetitive or Sequential and then click on the adjacent Setup button.

Repetitive Mode

If Repetitive is selected, the Repetitive Gating setup dialog box will appear (Figure 137). In this mode, the Gate Width and Gate Delay remain constant over the course of the measurement.

If operating in the Repetitive Gating mode, simply set the Gate Width and Gate Delay to the desired values and click on **OK**. The Repetitive Gating Setup dialog box will close and you will return to the DG535 dialog box.
Sequential Mode
If Sequential is selected, the Sequential Gating Setup dialog box will appear as shown in Figure 138. In the Sequential Gating mode, the Gate Width and Gate Delay do not remain constant but change either linearly or exponentially as the measurement progresses.

Linear is suited to sweeping over a time interval to locate and recover and event that takes place at the same time with each iteration.

Exponential is well suited to fluorescence decay experiments where the effect under study changes rapidly at the start of an experiment and then slower and slower, following a logarithmic curve, as the experiment progresses. The resulting data points can be spline-fitted to generate the complete curve so that the decay constant can be calculated, even where the data derives from two decay processes occurring simultaneously.

If the measurement is to be done in the sequential gating mode, set the pulsing parameters as appropriate for your intended measurement and click on OK. The Sequential Gating Setup dialog box will close and you return to the DG535 dialog box.

Parameters

Number of Images: With an Accumulations setting of one, Number of Images equals the number of exposures, each of which is followed by a readout. After each exposure, the Gate Width and Gate Delay change as programmed before the next exposure occurs. If multiple Accumulations are programmed, each exposure is repeated \(n \) times, where \(n \) is the number of accumulations specified. Every accumulation is processed before the gate delay and width change for the next shot. The total number of exposures equals the specified Number of Images times the number of Accumulations.

ATTENTION
Accumulations can be set on the DG535 Sequential Gating Setup dialog box and on the Experiment Setup|Main tab page. The two settings must be the same for proper operation.

Gate Width: The starting and ending gate widths are independently set. The first Shot will have the Starting gate width and the last Shot will have the Ending gate width. This is true for both the Fixed and Exponential increment type.

Gate Delay: The starting and ending gate delay values are independently set. The first Shot will be taken at the Starting delay with respect to \(T_0 \) and the last Shot will occur at the Ending delay with respect to \(T_0 \). This is true for both the Fixed and Exponential increment type.
Although the T0 output of the DG535 marks the start of each DG535 timing cycle, the precise timing of both the gate and signal at the camera will additionally depend on a number of different delay mechanisms that can significantly affect the experiment. These are discussed for the PI-MAX camera in some detail in *Tips and Tricks* section of the PI-MAX system manual.

Check Gate Width and Delay Min/Max (Message Displayed): If this box is checked and you specify a gate width or delay outside the allowable range, a warning message (Figure 139) will be displayed. Clicking **Yes** will cause the parameter in question to be set to the limit value. Clicking **No** will cause the parameter setting to be retained, but the *actual* value will still be the applicable minimum or maximum. If the box isn’t checked, the applicable minimum or maximum will be established automatically.

![Figure 139. Range Limits Exceeded Warning](image)

Fixed Increment Type: With this selection, the increment or change in Gate Width and Gate Delay is the same from shot to shot. The actual increments depend on the specified starting and ending values and on the Number of Images. The increment values are calculated and reported in the associated fields.

Exponential Increment Type: With this selection, the increment or change in Gate Width and Gate Delay changes from shot to shot. The precise delay and width of each shot with respect to T0 is determined by the values entered for the Fast Decay and Slow Decay **Time Constant** and **Amplitude** parameters. In fluorescent decay experiments, for example, there will typically be two species contributing to the output data, one of which decays much faster than the other. For example, there might be a fast fluorophor with a decay time of at most a few nanoseconds, and a slower one with a decay time of perhaps a hundred nanoseconds. By sweeping both the delay *and* the width, and making provision for entering time constant and amplitude information for two species, the sequential exponential algorithm is ideally suited to making this type of measurement. At the start of the decay where the amplitude is high but the decay is rapid, the gate pulses are narrow and close together. Towards the end of the decay where the decay is slow, the gate pulses are further apart but much wider to accommodate the lower signal amplitude. The result is output data that is relatively constant in intensity over the decay time. This data can be easily normalized by dividing each point by the exposure time and then using a spline fit to recover the curve. The logarithm (base e) can then be taken to obtain a straight line (or two lines successive line segments, each with a different slope for two species). Tangents can be fitted to each segment to determine the rate constant for each species.
Fast Decay

Time Constant: In a two species system, enter the *decay time* of the faster of the two species. Note that it is not *essential* that you enter a value. If you have the decay time information, you will get better data if the information is entered, but acceptable results can be obtained in many situations by using the default. If there is only one species, or if you want to discard the fast decay process, simply enter zero for the *Amplitude*.

Note that the Gate Width and Gate Delay values need to be selected with some care in fluorescence decay experiments. Typically the starting gate width will be very narrow, perhaps 2 ns, and the final gate width should be wider by about the ratio of the anticipated signal amplitude decrease over the course of the measurement timebase. Similarly, the starting gate delay has to take the various insertion delays into account, and the final delay value might typically be set to a value on the order of five times the anticipated decay time of the process.

Amplitude: This is the *relative* amplitude of the fast decay with respect to the slow one. For example, if you know that the amplitude of the fast decay signal is typically five times the amplitude of the slow decay signal, you could enter “5” for the fast decay amplitude and “1” for the slow decay amplitude. Keep in mind that it is the *ratio* that is being expressed. For example, there is no difference between entering fast and slow amplitude values of “5” and “1” and entering fast and slow amplitude values of “50” and “10.” Note that the default values will give satisfactory results in many measurements.

Slow Decay

Time Constant: In a two species system, enter the *decay time* of the slower of the two species. Note that it is not *essential* that you enter a value. If you have the decay time information, you will get better data if the information is entered, but acceptable results can be obtained in many situations by using the default. If there is only one species, or if you want to discard the fast decay process, simply enter zero for the *fast decay Amplitude*.

Amplitude: This is the *relative* amplitude of the slow decay with respect to the fast one. For example, if you know that the amplitude of the slow decay signal is typically one-fifth the amplitude of the fast decay signal, you could enter “1” for the slow decay amplitude and “5” for the fast decay amplitude. Keep in mind that it is the *ratio* that is being expressed. For example, there is no difference between entering slow and fast amplitude values of “1” and “5” and entering fast and slow amplitude values of “10” and “50.”
View Width/Delay Sequence: Opens a dialog box listing the currently programmed sequence of gate width and gate delay values.

Save Sequence Values to File: When this box is checked, the sequence values will be saved on completion of the run. The values saved are those actually used to take the data. The file could be recalled later and used for data normalization or other purposes.

Setup File: Opens the Sequence Values File dialog box (Figure 141), which enables the following:

- **Ask Before Overwriting:** If checked, you will be queried before a new sequence value file overwrites an existing one. If unchecked, overwriting can occur without warning.

- **Notify When File Has Been Saved:** The file is saved at the end of the data-acquisition run. You will be notified that this has occurred if this box is checked.

- **Use Default File Name:** If checked, sequence value file name will be experiment file name, but with the extension PDW. If unchecked, you must enter the name in the **Name** field.

- **Name:** If not using the default name for the sequence value file, enter the file name in the provided field. The button at the end of the box opens a browser to facilitate assigning the file location.

Software Accumulations: Sets the number of exposures to be taken for each Shot. Note that the number of Accumulations set here must be the same as the value set on the **Experiment Setup|Main** tab page for proper operation.

15. After you have finished setting up the parameters, click on **Download to DG535**. This writes all of the parameter values to the DG535.

16. Click on **OK** to close the window.

Note: The DG535 can also be controlled interactively as data is being collected.
Timing Generator Interactive Trigger Setup

The button on the Custom Toolbar, allows you to select the PTG or DG535 trigger mode (Internal or External) while acquiring data.

Internal: The Timing Generator will create its own trigger signals at the selected frequency.

External: The Timing Generator will be triggered by trigger signals that originate in an external piece of equipment.

Figure 142. Timing Generator Interactive Trigger Setup
This page intentionally left blank.
Chapter 14

Custom Toolbar Settings

Introduction

The Custom Toolbar feature of WinView/32 allows you one-button access to many features or combinations of features available through the software. The Custom Toolbar layout and the number of buttons displayed on the Custom Toolbar can easily be changed.

Displaying the Custom Toolbar

1. To make the Custom Toolbar visible, select Toolbars and then Custom on the View menu. The Custom Toolbar will appear on the desktop and its default configuration will be as shown in Figure 143.

2. You can change position of the Custom Toolbar, its layout, and the number of buttons it contains.

 ![Figure 143. Default Custom Toolbar](image)

Customizing the Toolbar

Although the Custom Toolbar defaults with the buttons shown in Figure 143, many additional buttons are in fact available and can be added to the button using the Customize Toolbar dialog box (Figure 144). Buttons can be added or removed at any time and the new configuration will be saved when the dialog box is closed.

 ![Figure 144. Customize Toolbar dialog box](image)
Adding an Available Button
1. Open the Customize Toolbar dialog by clicking on Customize Toolbar in the Setup menu.

2. Referring to Figure 144, note that the buttons available for placement on the Custom Toolbar are listed on the left. Buttons already on the toolbar are on the right.

3. To add an available button to the Custom Toolbar, first select it from the left-hand list. You may have to scroll through the list of available buttons to find the one you want. You can choose where to place the button by selecting a button on the right side (which will then be highlighted). The new button will be placed before the highlighted one.

4. Click on the Add button. The button will disappear from the list of Available buttons and will be added to the list of Toolbar buttons.

5. Click on Close to close the dialog box.

Removing a Button
1. Open the Customize Toolbar dialog by clicking on Customize Toolbar in the Setup menu.

2. Referring to Figure 144, note that buttons already on the toolbar are listed on the right. Available but unused buttons are listed on the left.

3. To remove an available button from the Custom Toolbar, first select it from the right-hand list. You may have to scroll through the listed buttons to find the one you want.

4. Click on the Remove button. The button will disappear from the list of Toolbar buttons and will be added to the list of Available buttons.

5. Click on Close to close the dialog box.

Individual Dialog Item Descriptions
Available Buttons: You can select the button you wish to add to the Custom Toolbar from this section. Many buttons, each with its own preassigned function as described below, are available.

Toolbar Buttons: These are the buttons that will actually appear on the Custom Toolbar.

Add: Causes the selected button on the Available buttons list to be transferred to the Toolbar buttons list before the selected button.

Remove: Causes the selected button on the Toolbar list to be transferred to the Available Buttons list.

Close: This button closes the Custom Toolbar Assignment dialog box and implements changes made to the Custom Toolbar.

Reset: Restores the default Custom Toolbar configuration.

Help: Opens the context-sensitive help for the Custom Toolbar.
Move Up: Together with Move Down, Move Up determines the position of a given button on the Custom Toolbar. Each time this button is clicked, the selected button on the Toolbar buttons list moves up one position.

Move Down: Together with Move Up, Move Down determines the position of a given button on the Custom Toolbar. Each time this button is clicked, the selected button on the Toolbar buttons list moves down one position.
This page intentionally left blank.
Software Options

Introduction

The WinView/32 options described in this chapter can also be purchased from Princeton Instruments. Contact Princeton Instruments Customer Support for order information.

Custom Chip (WXCstChp.opt)

Introduction

If this option has been installed, selecting Show Custom Chip checkbox on the Controller/Camera tab page adds the Custom Chip tab page to the dialog box. The Custom Chip parameters are shown in Figure 145. The default values conform to the physical layout of the CCD array and are optimum for most measurements.

Caution

Princeton Instruments does not encourage users to change these parameter settings. For most applications, the default settings will give the best results. We strongly advise contacting the factory for guidance before customizing the chip definition.

Figure 145. Custom Chip tab page

Normally, not all of the pixels in a CCD array are exposed and read out: a frame of “dummy” pixels bounds the active area. These dummy pixels are usually masked and are not normally read out. However, they could be read out by changing the chip definition in software. For example, in the case of the KDK 512 × 768 chip illustrated in Figure 145, the 512 active rows are preceded by four dummy rows and followed by four dummy rows. In addition, there are 14 dummy columns on one side of the active region and 14 dummy columns on the other side. By changing the chip definition to increase the active area while decreasing the dummy settings, the dummy cells would be read out. By doing so, one could measure the dark charge with every readout. (Note that F.T. Dummies are chip-specific and are dummy rows at the boundary of the masked and visible areas of a frame transfer device.)

It is also possible to increase image acquisition speed by reducing the size of the active area.
in the definition. The result will be faster but lower resolution data acquisition. Operating in this mode would ordinarily require that the chip be masked so that only the reduced active area is exposed. This will prevent unwanted charge from spilling into the active area or being transferred to the shift register.

By default, if there are no Pre-Dummy rows, the serial register will be cleared before rows are shifted. If the Skip Serial Register Clean box is selected when there are no Pre-Dummy rows, the register cleanout will be skipped and the chip readout will be faster. This feature is not available for PVCAM-supported cameras.

Custom Timing (WXCstTim.opt)

<table>
<thead>
<tr>
<th>Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fully supported by WinView Version 2.5.18.1 (and higher).</td>
</tr>
<tr>
<td>2. This option is not supported for 5 MHz systems.</td>
</tr>
</tbody>
</table>

Introduction

If this option has been installed, selecting Show Custom Timing checkbox on the Controller/ Camera (or Controller/Detector) tab page adds the Custom Timing tab page to the dialog box. The Custom Timing selections are shown in Figure 146. The default timing parameter values have been determined to give the fastest possible performance without compromising data acquisition performance.

Princeton Instruments does not encourage users to change these parameter settings. For most applications, the default settings will give the best results. We **strongly advise** contacting the factory for guidance before customizing the chip timing parameters.

FITS (FITS.exe)

FITS (Flexible Image Transport System) is the data format most widely used within astronomy for transporting, analyzing, and archiving scientific data files. FITS is primarily designed to store scientific data sets consisting of multidimensional arrays (images) and 2-dimensional tables organized into rows and columns of information. The FITS option allows you to acquire and save WinView/32 data in the FITS format. This option also provides a file conversion function that allows you to convert existing WinView/32 .SPE data files into the FITS format. F1 help is included with the option.

Acquiring data in the FITS format starts with setting up the experiment parameters in WinView/32. With WinView still open, you then open the FITS.exe program (by
opening it at its directory location or by opening it from the Execute Macro dialog box if the Macro option has been installed). When you click on Run Experiment on the FITS dialog box, the experiment will begin. At completion of the experiment, the data will be displayed in WinView and a FITS file will automatically be generated and saved.

Note: When this option is installed, the FITS.exe file is placed in the same directory as the WinView.exe file.

![Figure 147. FITS dialog box](image)

Macro Record (WXmacrec.opt)

Macro Record is a convenient method to automate routines and repetitive data acquisition and analysis tasks. A macro is created automatically whenever a sequence of operations is performed in WinView. The recorded macro generates a VBScript file that can be edited to provide maximum flexibility. For more information, refer to the WinView/32 online help and the PDF of the WinX32 Programming for Macro Record manual, provided as part of the option package. Typically, the manual is stored in the WinView32/Documentation directory when you install the option.

Note: As part of the Macro option installation, the Macro menu is added to the WinView/32 menu bar.

![Figure 148. Macro Record dialog box](image)
Virtual Chip (WXvchip.opt)

Introduction

This option is used to set the parameters for Virtual Chip operation, a special fast-
acquisition technique that allows frame rates in excess of 100 fps to be obtained. For the
Virtual Chip selection be available on the WinView/32 Setup menu, it is necessary that:

- the system is a PentaMAX or has an ST-133 Controller,
- the camera has a frame transfer chip such as the EEV 512 × 512 FT,
- the Frame Transfer readout mode is selected, and
- the file WXvchip.opt is present in the same directory as the executable
 WinView/32 program.

The virtual chip method of data acquisition requires that the chip be masked as shown in
Figure 149. Masking can be achieved by applying a mechanical or optical mask or by
positioning a bright image at the ROI against a dark background on the remainder of
the array. In operation, images are continually piped down the CCD at extraordinarily high
frames per second (FPS).

The mini-frame transfer region is defined by an ROI as illustrated in Figure 149. The
charge from this ROI is shifted under the frame-transfer mask, followed by a readout
cycle of an ROI-sized region under the mask. Since the ROI is far from the serial
register, the stored image is just shifted repeatedly with the readout and the first few
images collected will not contain useful data. After the readout period, the next frame is
shifted under the mask and another ROI sized frame is read out. The net result is a series
of images, separated by spacer regions, streaming up the CCD under the mask.

![Virtual Chip Functional diagram](image1)

![Virtual Chip dialog box](image2)
Virtual Chip Setup
The following procedure covers the basic hardware and software setup for Virtual Chip operation.

Equipment:
- Suitable Princeton Instruments camera with 512x512FT or other frame transfer CCD array
- Suitable ST-133 with TAXI interface card
- High Speed Serial (TAXI) cable
- Suitable Host Computer with installed Princeton Instruments (RSPI) High Speed PCI Card

Software:
- WinView/32, version 2.4 or higher
- WXvchip.opt installed in the same directory as the executable WinView/32 program

Assumptions:
- You are familiar with the WinView/32 software and have read the hardware manuals.
- Masking is for a 47x47 pixel Virtual Chip with its origin at 1,1.

Procedure:
1. Verify that the power is **OFF** for **ALL** system components (including the host computer).
2. Verify that the correct line voltages have been selected and that the correct fuses have been installed in the ST-133.
3. Connect the TAXI cable to the PCI card at the host computer and to the Serial Com connector at the rear of the Controller. Tighten down the locking screws.
4. Connect the **Camera-Controller** cable to the **Detector** connector on the rear of the Controller and to the **Detector** connector at the rear of the camera. Tighten down the locking screws.
5. If it has not been installed already, connect a line cord from the Power Input module on the back of the Controller to a suitable AC power source.
6. Turn on the Controller.
7. Turn on the host computer and select the WinView/32 icon.
8. From the **Setup** menu, select **Hardware**, and enter the following settings:
 - **Controller/CCD tab card**
 - **Controller**: PentaMax or the appropriate ST-133 controller
 - **Controller Version**: 5
 - **CCD Type**: appropriate frame transfer array (EEV 512x512FT, for this procedure)
 - **Shutter Type**: None
 - **LOGIC OUT Output**: Shutter
 - **Readout Mode**: Frame Transfer
 - **Interface tab card**
 - **Type**: the appropriate interface card. For this procedure, the selection is High Speed PCI.
Cleans/Skips tab card
Number of Cleans: 1
Number of Strips per Clean: 512
Minimum Block Size: 2
Number of Blocks: 5

9. From the Acquisition menu, select Experiment Setup and enter the following settings:
Main tab card
Exposure Time: Enter a value. The exposure time can either be greater than the readout time or it can be equal to the readout time. If you want an exposure time > readout time, enter a value larger than the readout time calculated when the virtual chip definition was downloaded. If you want an exposure time = readout time, enter 000 sec.
Number of Images: Enter the desired number of images.
Use Region of Interest Accumulations: 1

ADC tab card
Type: FAST

ROI Setup tab card: Make no changes to the settings on this tab card unless you have re-enabled Normal Operating Mode. ROI setup for Virtual Chip (High Speed Mode) is performed through the Virtual Chip dialog box.

10. From the Setup menu, select Virtual Chip, and enter the following settings:
High Speed Mode Enabled
Virtual Chip Definition: The settings below assume a 47x47 pixel virtual chip. The X and Y dimensions are established by the external mask. The virtual chip is fully flexible in the X direction. However, the set of choices for the Y-dimension has been pre-selected for optimal performance. Note that the origin point that Princeton Instruments uses for a CCD array is 1,1.
Chip Y Dimension: 47. Select this dimension from the drop down list.
Chip X Dimension: 47. Enter this dimension manually.

11. Click on the Load Default Values button. This enters the default ROI values. These values are: Start pixels of 1,1; End pixels based on the Chip Y and Chip X dimensions; and Groups of 1.
 • Region of Interest: The settings below assume a 47x47 pixel ROI (i.e., the entire virtual chip). An ROI that is a subset of the virtual chip can be defined.
 X Start: 1 Y Start: 1
 X End: 47 Y End: 47
 X Group: 1 Y Group: 1
 • Click on the Download Virtual Chip Definition button. This will download the definition, set up the ROI, and calculate the readout time.
• Observe the calculated readout time. If you need a shorter period, change the settings (for example, enter a smaller Y-dimension or use binning in the Y-direction) and click on the Download Virtual Chip Definition button again.
• Click on Close.

12. From the Setup menu, select Environment.

 Note: When setting up for focusing, the number of Frames/Interrupt should be left at 1.

- **DMA Buffer (Mb):** By default, the buffer size is 8 Mb. Using the following formula, calculate the amount of DMA memory required:
 \[X \times Y \times \#Frames \times (2 \text{ bytes/pixel}) \]

 For example, the buffer size required for a 47x47 virtual array acquiring 1000 frames would be 47 \times 47 \times 1000 \text{ frames} \times (2 \text{ bytes/pixel}) = 4.4 \text{ Mb}. If the calculated value is greater than 8 Mb, enter the appropriate size.

 Note: This value is not enabled until you restart your computer.

- **Frames/Interrupt:** If the number of frames is greater than 256 (the preprogrammed slot limit for a PCI card), increase the number of Frames/Interrupt value. Use the formula \#Frames/256 and round the result to the next highest integer to calculate that value. For example, 1000 frames/256 will result in 3.9, so enter 4.

 Note: This value should be 1 for Focus mode.

13. Click on OK after you have finished entering the Environment settings.
14. Place a suitable target in front of the camera and click on Focus to verify that the camera is seeing the target.
15. Make any focusing, gain, or other adjustments necessary to fine-tune the image.
16. Stop running in Focus mode.
17. Now click on Acquire.

Experimental Timing

Triggering can be achieved through the software via the Software Trigger timing mode (selectable on the Experiment Setup dialog box, Timing Mode tab page) or it can be achieved via the Ext Sync input on the rear of the camera. Triggering from the Ext Sync input allows you to acquire a single image per TTL pulse. If Software Trigger has been selected, back-to-back collection of the requested number of images will be initiated when Acquire is selected: no further TTL trigger input is required.

Tips

- If mechanical masking is used, the mask can be a static one (fixed dimensions) in which case, multiple masks should be made to accommodate a variety of imaging conditions. Alternatively, a more flexible mask can be manufactured by taking two thin metal sheets with a square hole the size of the exposed region of the CCD cut in the center. For a 512 \times 512 pixel CCD array with 15 micron pixels, the exposed region would be 7.68 mm \times 7.68 mm. These masks should be anodized black to prevent reflections in the optical system and they should be
very flat. These two sheets can then be slid relative to one another to achieve any rectangular shape required. The sheets should be placed flat in the optical plane and their openings should be centered on the optical axis. Ideally they should be able to move with an accuracy of 2-3 pixels per step (30-45 microns) in the X and Y directions.

Consult the factory for off-the-shelf optical masking accessories

- Running the camera in Free Run mode with 0.0 msec exposure time will result in the fastest acquisition time. Under these conditions, the acquisition time is limited by the readout time of the ROI (exposure time = readout time).

- When you return the system to "Normal" chip mode (radio button on Virtual Chip dialog box), you should also open the Experiment Setup dialog box at the ROI Setup tab card and click on the ClearAll button to clear the ROI setup downloaded for Virtual Chip operation.

- If frame acquisition appears to be slow in Focus mode, check the Frames/Interrupt value on the Environment dialog box and reset the value to 1 if it is greater than 1.

- When processing large stacks of data, you may want to use a third-party scientific image processing package.

- Due to CCD design, you may see some edge artifacts when acquiring data from the entire virtual chip. Crop these artifacts by defining an ROI that is slightly smaller than the virtual chip dimensions.
Part 3
Reference

Appendix A, System and Camera Nomenclature .. 161
Appendix B, Data Structure .. 169
Appendix C, CD ROM Failure Workarounds .. 179
Appendix D, WinView/32 Repair and Maintenance 181
Appendix E, USB 2.0 Limitations ... 185
Appendix F, Troubleshooting USB 2.0 .. 187
Appendix G, Glossary .. 199
This page intentionally left blank.
Appendix A
System and Camera Nomenclature

System, Controller Type, and Camera Type Cross-Reference

Use the cross-reference table below if you need to determine the controller type and/or camera/CCD type used by your system. This table is based on the Princeton Instruments brand systems that are currently being sold by Roper Scientific, Inc. Many of these systems incorporate non-volatile RAM (NVRAM) that has been factory programmed with the default hardware setup parameters for the controller, camera, and CCD array included in your system. If you know the controller type used by your system, you should be able to download these default parameters. However, if this functionality is not available for your system, you will need to manually enter the information.

Note: Because Marconi changed its name to e2v, you may see CCD types with the prefix "MAR", "EEV", or "e2v". These CCDs are manufactured by e2v.

<table>
<thead>
<tr>
<th>System</th>
<th>Controller Type</th>
<th>Camera/CCD Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D-OMA V: 320</td>
<td>ST-133-5 MHz</td>
<td>XEN 320</td>
</tr>
<tr>
<td>I-PentaMAX (Gen II or Gen III)</td>
<td>PentaMAX*</td>
<td>EEV 512x512FT</td>
</tr>
<tr>
<td>MicroMAX: 512EBFT</td>
<td>ST-133</td>
<td>EEV 512x512FT CCD57</td>
</tr>
<tr>
<td>MicroMAX: 782Y</td>
<td>ST-133</td>
<td>PID 582x782</td>
</tr>
<tr>
<td>MicroMAX: 782YHS</td>
<td>ST-133-5 MHz</td>
<td>PID 582x782</td>
</tr>
<tr>
<td>MicroMAX: 1024B</td>
<td>ST-133</td>
<td>EEV 1024x1024 CCD 47_10</td>
</tr>
<tr>
<td>MicroMAX: 1300B</td>
<td>ST-133</td>
<td>EEV 1300x1340B</td>
</tr>
<tr>
<td>MicroMAX: 1300Y</td>
<td>ST-133</td>
<td>PID1030x1300</td>
</tr>
<tr>
<td>MicroMAX: 1300YHS</td>
<td>ST-133-5 MHz</td>
<td>PID1030x1300</td>
</tr>
<tr>
<td>OMA V:InGaAs 256</td>
<td>ST-133</td>
<td>InGaAs 1x256</td>
</tr>
<tr>
<td>OMA V:InGaAs 512</td>
<td>ST-133</td>
<td>InGaAs 1x512</td>
</tr>
<tr>
<td>OMA V:InGaAs 1024</td>
<td>ST-133</td>
<td>InGaAs 1x1024</td>
</tr>
</tbody>
</table>

* Does not support NVRAM function.
<table>
<thead>
<tr>
<th>System</th>
<th>Controller Type</th>
<th>Camera/CCD Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDA</td>
<td>ST-121*</td>
<td>Diode Array 1024</td>
</tr>
<tr>
<td>PhotonMAX: 512B</td>
<td>N/A</td>
<td>e2v CCD97</td>
</tr>
<tr>
<td>PI-LCX: 400</td>
<td>ST-133</td>
<td>EEV 400x1340F</td>
</tr>
<tr>
<td>PI-LCX: 576</td>
<td>ST-133</td>
<td>EEV 576x384 (3 ph)</td>
</tr>
<tr>
<td>PI-LCX: 1242</td>
<td>ST-133</td>
<td>EEV 1152x1242 (3 ph)</td>
</tr>
<tr>
<td>PI-LCX: 1300</td>
<td>ST-133</td>
<td>EEV 1300x1340F</td>
</tr>
<tr>
<td>PI-MAX: 512HQ</td>
<td>ST-133</td>
<td>THM 512x512</td>
</tr>
<tr>
<td>PI-MAX: 512RB</td>
<td>ST-133</td>
<td>THM 512x512</td>
</tr>
<tr>
<td>PI-MAX: 512SB</td>
<td>ST-133</td>
<td>THM 512x512</td>
</tr>
<tr>
<td>PI-MAX: 512UV</td>
<td>ST-133</td>
<td>THM 512x512</td>
</tr>
<tr>
<td>PI-MAX: 1024HQ</td>
<td>ST-133</td>
<td>EEV 256x1024F CCD30</td>
</tr>
<tr>
<td>PI-MAX: 1024RB</td>
<td>ST-133</td>
<td>EEV 256x1024F CCD30</td>
</tr>
<tr>
<td>PI-MAX: 1024SB</td>
<td>ST-133</td>
<td>EEV 256x1024F CCD30</td>
</tr>
<tr>
<td>PI-MAX: 1024UV</td>
<td>ST-133</td>
<td>EEV 256x1024F CCD30</td>
</tr>
<tr>
<td>PI-MAX MG: 1024</td>
<td>ST-133</td>
<td>EEV 256x1024F CCD30</td>
</tr>
<tr>
<td>PI-MAX2:512 (Gen II or Gen III)</td>
<td>ST-133-5 MHz</td>
<td>THM 512x512</td>
</tr>
<tr>
<td>PI-MAX2:1003 (Gen II or Gen III)</td>
<td>ST-133-5 MHz</td>
<td>KAI 1024x1024</td>
</tr>
<tr>
<td>PI-MTE: 1300B</td>
<td>ST-133, ST-133-2 MHz</td>
<td>EEV 1300x1340B</td>
</tr>
<tr>
<td>PI-SCX: 1242</td>
<td>ST-133</td>
<td>EEV 1152x1242 (6 ph)</td>
</tr>
<tr>
<td>PI-SCX: 1300</td>
<td>ST-133</td>
<td>EEV 1300x1340F</td>
</tr>
<tr>
<td>PI-SCX: 4300</td>
<td>ST-133</td>
<td>KAF 2084x2084 SCX</td>
</tr>
<tr>
<td>PI-SX: 400</td>
<td>ST-133</td>
<td>EEV 400x1340B</td>
</tr>
<tr>
<td>PI-SX: 512</td>
<td>ST-133</td>
<td>TEK 512x512DB</td>
</tr>
<tr>
<td>PI-SX: 1024</td>
<td>ST-133</td>
<td>TEK 1024x1024DB</td>
</tr>
<tr>
<td>PI-SX: 1300</td>
<td>ST-133</td>
<td>EEV 1300x1340B</td>
</tr>
<tr>
<td>PIXIS:100F, B, BR, R</td>
<td>N/A</td>
<td>EEV 100x1340F/B</td>
</tr>
<tr>
<td>PIXIS:400F, B, BR, R</td>
<td>N/A</td>
<td>EEV 400x1340F/B</td>
</tr>
<tr>
<td>System</td>
<td>Controller Type</td>
<td>Camera/CCD Type</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>PIXIS:512F, B</td>
<td>N/A</td>
<td>MAR 512x512 CCD 77</td>
</tr>
<tr>
<td>PIXIS:1024F, B</td>
<td>N/A</td>
<td>EEV 1024x1024 CCD 47-10</td>
</tr>
<tr>
<td>PIXIS-XO:100B</td>
<td>N/A</td>
<td>PI 1340x100B</td>
</tr>
<tr>
<td>PIXIS-XO:400B</td>
<td>N/A</td>
<td>PI 1340x400B</td>
</tr>
<tr>
<td>PIXIS-XO:512B</td>
<td>N/A</td>
<td>e2v 512x512B CCD 77-00</td>
</tr>
<tr>
<td>PIXIS-XO:1024B</td>
<td>N/A</td>
<td>e2v 1024x1024 CCD 47-10</td>
</tr>
<tr>
<td>PIXIS-XO:2KB</td>
<td>N/A</td>
<td>PI 2048x512B</td>
</tr>
<tr>
<td>Spec-10: 100, B, R, BR</td>
<td>ST-133</td>
<td>EEV 100x1340F, 100x1340B</td>
</tr>
<tr>
<td>Spec-10: 120</td>
<td>ST-133</td>
<td>HAM 124x1024</td>
</tr>
<tr>
<td>Spec-10: 120B</td>
<td>ST-133</td>
<td>HAM 122x1024B</td>
</tr>
<tr>
<td>Spec-10: 256, B, E</td>
<td>ST-133</td>
<td>EEV 256x1024F CCD30, B, OE</td>
</tr>
<tr>
<td>Spec-10: 400, B, R, BR</td>
<td>ST-133</td>
<td>EEV 400x1340F/B</td>
</tr>
<tr>
<td>Spec-10XP: 100, B, R, BR</td>
<td>ST-133-2MHz</td>
<td>EEV 100x1340F/B</td>
</tr>
<tr>
<td>Spec-10XP: 400, B, R, BR</td>
<td>ST-133-2MHz</td>
<td>EEV 400x1340F/B</td>
</tr>
<tr>
<td>SpectruMM:120</td>
<td>ST-133</td>
<td>HAM 124x1024</td>
</tr>
<tr>
<td>SpectruMM:120B</td>
<td>ST-133</td>
<td>HAM 122x1024B</td>
</tr>
<tr>
<td>SpectruMM:250</td>
<td>ST-133</td>
<td>HAM 252x1024</td>
</tr>
<tr>
<td>SpectruMM:250B</td>
<td>ST-133</td>
<td>HAM 250x1024B</td>
</tr>
<tr>
<td>VersArray: 512B, F</td>
<td>ST-133</td>
<td>TEK 512x512DB/DF</td>
</tr>
<tr>
<td>VersArray: 1024B, F</td>
<td>ST-133</td>
<td>TEK 1024x1024DB/DF</td>
</tr>
<tr>
<td>VersArray: 1300B, F</td>
<td>ST-133</td>
<td>EEV 1300x1340B/F</td>
</tr>
<tr>
<td>VersArrayXP: 512B, F</td>
<td>ST-133-2MHz</td>
<td>MAR 512x512 CCD77</td>
</tr>
<tr>
<td>VersArrayXP: 1K, KB</td>
<td>ST-133-2MHz</td>
<td>EEV 1024x1024 CCD47_10</td>
</tr>
</tbody>
</table>

System and System Component Descriptions

The following information briefly describes Princeton Instruments brand systems and the system components. For more information, contact your Princeton Instruments representative or Customer Support.
Systems:

2D-OMA V: Cryogenically-cooled focal plane array (FPA) based system for low light level NIR imaging (0.8µm-1.7µm).

InSight: Includes an f/3.9 imaging spectrograph integrated with a high performance digital CCD. The system is pre-aligned and focused at the factory, allowing for effortless integration into experiments.

MicroMAX: Name used for some ST-133 based imaging systems, usually with an RTE head. The 5 MHz version is characterized by duplex head cable

OMA V: Cryogenically-cooled Photodiode array (PDA) based system for spectroscopy applications.

PDA: Low-cost spectroscopy system uses ST-121 controller.

PentaMAX: A/D electronics are in the head so no controller is necessary. Runs with PCI card only. Both unintensified and intensified versions are available.

PhotonMAX: EMCCD (electron-multiplying CCD). Optimized for both traditional CCD *and* “on-chip multiplication gain” operation. Internal controller. Vacuum guaranteed for the life of the camera.

PI-Echelle: Spectrograph that achieves high spectral resolution over the entire wavelength range of the camera (one of several compatible Princeton Instruments cameras) without any moving parts. The system is ideal for both general spectroscopy applications as well as Laser Induced Breakdown Spectroscopy.

PI-LCX: High-performance photon counting system. Medium X-ray, direct detection

PI-MAX: ICCD design with internal high voltage power and gating. Controller is ST-133, and gating timing is provided by a DG535, PTG or other TTL timing source.

PI-MAX2: High speed PI-MAX. ICCD design with internal high voltage power and gating. Controller is ST-133-5MHz, and gating timing is provided by a DG535, PTG or other TTL timing source.

PI-MTE: Compact high-sensitivity digital imaging system designed to deliver scientific performance inside high-vacuum chambers over long operation times.

PI-SCX: X-ray diffraction, fiberoptically-coupled detector.

PI-SX: High-sensitivity, deep-vacuum interface for soft X-ray acquisition.

PIXIS: Compact, permanent vacuum camera platform with internal controller. Designed for low-light-level spectroscopy and imaging.

PIXIS-XO: Compact, vacuum open-nose camera platform with internal controller and rotatable ConFlat flange. Designed for direct imaging of very low energy X-ray (< 30 eV).

SPEC-10: High performance, spectroscopy system. Wide variety of CCD arrays. Thermolectric or cryogenic cooling available.

SPEC-10XP: High performance spectroscopy system with “XP” lifetime vacuum. This system can be thermoelectrically (air) cooled down to -80°C and has software-selectable six-speed digitization (up to 2 MHz).

SpectruMM: Name used for some ST-133 based spectroscopy systems with an RTE head.
TriVista: Consists of three imaging-corrected Acton Research spectrographs that can be used in single, double, and triple configurations. May incorporate PMT detectors an/or one or more Princeton Instruments CCD detectors.

VersArray: High-performance, general purpose imaging system. Wide variety of CCD arrays in imaging formats. Thermoelectric or cryogenic cooling available.

VersArrayXP: High-performance low-light imaging system for astronomy, MCP readout, pressure-sensitive paint (PSP) / wind tunnel testing, semiconductor failure analysis, and streak tube readout applications. Deep thermoelectric cooling (air).

Controllers:
- **ST-121:** Diode array controllers shipped with diode array detectors, controlled by a PCI card.
- **ST-130:** Obsolete controller but still supported in the WinView/32 software.
- **ST-133:** Controller that can run the vast majority of Princeton Instruments brand cameras, including MicroMAX, PI-MAX, Spec-10, PI-LCX, PI-MTE, PI-SCX, PI-SX, OMA V, and VersArray. Different hardware types are needed to run different detectors (for example, liquid nitrogen-cooled vs. thermoelectrically-cooled).
- **ST-133 2 MHz:** ST-133 controller, characterized by six software-selectable ADC rates.
- **ST-133 5 MHz:** ST-133 controller, characterized by duplex head cable.
- **ST-138:** Older controller for TE, LN, ICCD, and ITE units. It offers a few special features such as hardware accumulator. In general, this controller is being phased out.

Cameras/Detectors:
- **HCTE/CCD:** See NTE/CCD and NTE 2.
- **ICCD:** Standard, “classic” intensified camera, requires purging, has internal high voltage power but requires external high voltage pulses for gating. Controlled by ST-133 or ST-138.
- **LN/CCD:** Liquid nitrogen cooled detector, 1.5 liter Dewar is standard, can be run with ST-138 or ST-133.
- **LN/InGaAs:** Indium gallium arsenide detector controlled by a ST-133 controller.
- **MTE 2:** Miniature liquid cooled camera, designed for in vacuum chamber operation, can be run with ST-133 controller. Included in a PI-MTE system.
- **NTE/CCD and NTE 2:** Stands for new TE head. More cube shaped than the TE, designed for maximum cooling. NTE 2 requires high-power version of ST-133.
- **RTE/CCD:** Round thermoelectrically cooled camera, can be run with ST-133 controllers.
- **TE/CCD:** Water- cooled camera, can be run with ST-138 or some ST-133 controllers.
- **TEA/CCD:** Forced air-cooled camera, can be run with ST-138 or some ST-133 controllers.
- **V/ICCD:** Video intensified detector. Always shipped with its own control box, produces standard video out so no interface card or software required. As of Version 2.5, this detector will not be supported by WinView.
- **XP:** TE/air-cooled camera with lifetime vacuum, can be run with ST-133 controllers. Six-speed digitization is an option.
XTE: TE/air-cooled detector with cooling down to -100°C, can be run with ST-133 controllers.

Pulsers:
- **FG-100:** Pulser with 5 nsec - 3 µsec gating, Gen II intensifiers only.
- **FG-101:** Obsolete version of an ICCD unit, with internal high voltage power and gating.
- **PG-10:** Pulser with 200 nsec to 6 msec gating, Gen II intensifiers only.
- **PG200:** Software programmable pulser with 5 nsec to 80 msec gating. Highest performance pulser with the most features, Gen II intensifiers only.
- **PTG:** Dedicated "programmable delay generator" board that generates TTL level pulses to control intensifier gating in PI-MAX models. It is an option that sits in the third slot of an ST-133 controller.

High-Voltage Power Supplies:
- **IIC-100:** High voltage power supply for intensified cameras without internal high voltage supplies (intensified PentaMAX, ITE, or lens-coupled intensified systems) for CW operation only. Not necessary for ICCD or PI-MAX cameras. For gated operation of intensified PentaMAX or ITE cameras buy the board version of the IIC-100, called the MCP-100, built into the pulser. During manufacture, a Model IIC-100 is configured for operation with a Gen II intensifier or with a Gen III intensifier, but not for operation with both types.
- **IIC-200:** Compact high voltage power supply for intensified cameras without internal high voltage supplies (intensified PentaMAX, ITE, or lens-coupled intensified systems) for gated and CW/Shutter operation. During manufacture, a Model IIC-200 is configured for operation with a Gen II intensifier or with a Gen III intensifier, but not for operation with both types.
- **IIC-300:** Combined image intensifier power supply and moderate performance gating pulse generator. Gated and CW/Shutter operation. PIV version available. During manufacture, a Model IIC-300 is configured for operation with a Gen II intensifier or with a Gen III intensifier, but not for operation with both types.

Miscellaneous Components:
- **OFA:** An adapter for connecting a fiber optic input to a spectrometer. Two versions are available for the best possible f/# matching, see the price list for details.
- **CC-100:** Closed coolant circulator (not a chiller) designed for TE, TEA, or ICCD cameras.
- **UV Lens:** f/1.2 catadioptric lens only for ICCD or PI-MAX cameras

CCD Array Designators
In the past, the designators in the following list were often used on camera serial labels to identify the CCD array in the camera.
- **B:** Back-illuminated CCD
- **DDA:** Dual diode array CCD
- **F:** Front illuminated CCD, in many cases no letter is used
E: CCD made by EEV
T: CCD made by Thomson
K: CCD made by Kodak
H: CCD made by Hamamatsu
HS: “High speed” MicroMAX system runs at 5 MHz
FT: Frame transfer detector
M: MPP (multi-pin phasing) CCD
P: (Usually) CCD offered exclusively by Princeton Instruments
PDA: Photodiode array
R: Deep depletion
S: Usually refers to SITe arrays, also see TK
TK: CCD made by SITe (formerly Tektronix), sometimes labeled S
UV: UV-to-VIS standard lumogen coating for UV-response to 195 nm
UVAR: Permanent UV-to-NIR A/R coating on some SITe CCDs (not lumogen/metachrome)
VISAR: Permanent VIS to NIR A/R coating on some SITe CCDs (not lumogen/metachrome)
Y: Interline CCD made by Sony
/1: grade 1 CCD
/2: grade 2 CCD
/3: grade 3 CCD
64: array format is 1024 x 64 pixels
100: array format is 1340 x 100 pixels
128: array format is 1024 x 128 pixels
256: 256 element linear array
400: array format is 1340 x 400 pixels
512: array format is 512 x 512 pixels; or 512 elements for linear arrays
576: array format is 576 x 384 pixels
768: array format is 768 x 512 pixels
782: array format is 782 x 582 pixels
1000: array format is 1000 x 800 pixels
1024: array format is 1024 x 256 (EEV or Hamamatsu) or 1024 x 1024 (SITe)
1100: array format is 1100 x 330 pixels
1242: array format is 1152 x 1242 pixels
1280: array format is 1280 x 1024 pixels
1300: array format is 1300 x 1030 pixels (Sony) or 1300 x 1340 pixels (EEV)

1317: array format is 1317 x 1035 pixels

1340: array format is 1340 x 100, 400, or 1300; family is exclusive to Princeton Instruments

1536: array format is 1536 x 1032 pixels

2032: array format is 2025 x 2032 pixels

2500: array format is 2500 x 600, rectangular pixels

3072: array format is 3072 x 2048 pixels
Appendix B

Data Structure

Version 1.43 Header

All WinView or WinSpec files (version 1.43) must begin with the following 4100 byte header:

typedef WINXHEAD {
 0 int dioden; /* CCD X dimension. */
 2 int avgexp; /* Not used by WinView */
 4 int exposure; /* exposure if -1 see lexpos */
 6 int datarange; /* Not used by WinView */
 8 int mode; /* Not used by WinView */
 10 float wexsy; /* Not used by WinView */
 14 int asyavg; /* Not used by WinView */
 16 int asyseq; /* Not used by WinView */
 18 int linefreq; /* Not used by WinView */
 20 int date0; /* Not used by WinView */
 22 int date1; /* Not used by WinView */
 24 int date2; /* Not used by WinView */
 26 int date3; /* Not used by WinView */
 28 int date4; /* Not used by WinView */
 30 int ehour; /* Not used by WinView */
 32 int eminute; /* Not used by WinView */
 34 int noscan; /* # of stripes collected if -1 see */
 /* Inoscan. */
 36 int fastacc; /* Not used by WinView */
 38 int avgtime; /* Not used by WinView */
 40 int dmatotal; /* Not used by WinView */
 42 int faccount; /* X dimension : Actual dim of image. */
 44 int stdiode; /* Not used by WinView */
 46 float nanox; /* Not used by WinView */
 48 float calibdio[10]; /* Not used by WinView */
 50 char fastfile[16]; /* fast access file. Not used by WinView */
 106 int asynen; /* Not used by WinView */
 108 int datatype; /* 0 -> float (4 byte) */
 /* 1 -> long integer (4 byte) */
 /* 2 -> integer (2 byte) */
 /* 3 -> unsigned integer (2 byte) */
 /* 4 -> String/char (1 byte) */
 /* 5 -> double (8 bytes) Not implemented */
 /* 6 -> byte (1 byte) */
 /* 7 -> unsigned byte (1 byte) */
 110 float calibnan[10]; /* Not used by WinView */
 150 int itnum; /* Not used by WinView */
 152 int astdiode; /* Not used by WinView */
 154 int int78; /* Not used by WinView */
 156 int int79; /* Not used by WinView */
 158 double calibpol[4]; /* Not used by WinView */
 190 int int96; /* Not used by WinView */
 192 int int97; /* Not used by WinView */
 194 int int98; /* Not used by WinView */
 196 int int99; /* Not used by WinView */
 198 int int100; /* Not used by WinView */
 200 char exprem[5][80]; /* comments */
 600 int int301; /* Not used by WinView */
 602 char label[16]; /* Not used by WinView */
 618 int gsize; /* Not used by WinView */
 620 int ifloat; /* Not used by WinView */
 622 char califile[16]; /* calibration file. Not used by WinView */
 638 char bkgdfile[16]; /* background file. Not used by WinView */
Version 1.6 Header

All WinView/WinSpec files (version 1.6) and WinView/32 and WinSpec/32 data files must begin with the following 4100 byte header. Data files created under previous versions of WinView/WinSpec can still be read correctly. However, files created under the new versions (1.6 and higher) cannot be read by previous versions of WinView/WinSpec.

Header Structure Listing

<table>
<thead>
<tr>
<th>Decimal Byte</th>
<th>Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsigned int</td>
<td>0</td>
<td>dioden; num of physical pixels (X axis)</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>avgexp; number of accumulations per scan</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>exposure; exposure time (in milliseconds)</td>
</tr>
<tr>
<td>unsigned int</td>
<td>8</td>
<td>xDimDet; Detector x dimension of chip</td>
</tr>
<tr>
<td>int</td>
<td>12</td>
<td>mode; timing mode</td>
</tr>
<tr>
<td>float</td>
<td>16</td>
<td>exp_sec; alternative exposure, in secs.</td>
</tr>
<tr>
<td>int</td>
<td>20</td>
<td>asyavg; number of asynchron averages</td>
</tr>
<tr>
<td>int</td>
<td>24</td>
<td>asyseq; number of asynchron sequential</td>
</tr>
<tr>
<td>unsigned int</td>
<td>28</td>
<td>yDimDet; y dimension of CCD or detector</td>
</tr>
<tr>
<td>int</td>
<td>32</td>
<td>ehour; Experiment Time: Hours (as binary)</td>
</tr>
<tr>
<td>int</td>
<td>36</td>
<td>eminute; Experiment Time: Minutes(as binary)</td>
</tr>
<tr>
<td>int</td>
<td>40</td>
<td>noscan; number of multiple scans</td>
</tr>
<tr>
<td>int</td>
<td>44</td>
<td>fastacc;</td>
</tr>
<tr>
<td>int</td>
<td>48</td>
<td>seconds; Experiment Time: Seconds(as binary)</td>
</tr>
<tr>
<td>int</td>
<td>52</td>
<td>DetType; CCD/DiodeArray type</td>
</tr>
<tr>
<td>unsigned int</td>
<td>56</td>
<td>xdim; actual # of pixels on x axis</td>
</tr>
<tr>
<td>int</td>
<td>60</td>
<td>stdiode; trigger diode</td>
</tr>
<tr>
<td>float</td>
<td>64</td>
<td>nanox;</td>
</tr>
<tr>
<td>float</td>
<td>68</td>
<td>calibdio[10]; calibration diodes</td>
</tr>
<tr>
<td>char</td>
<td>72</td>
<td>fastfile[16]; name of pixel control file</td>
</tr>
<tr>
<td>int</td>
<td>76</td>
<td>asynen; asynchron enable flag 0 = off</td>
</tr>
<tr>
<td>int</td>
<td>80</td>
<td>datatype; experiment data type</td>
</tr>
<tr>
<td></td>
<td>84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>88</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B Data Structure

```c
/* 2 = INTEGER */
float  calibnan[10]; /* 110 calibration nanometer */
int    BackGrndApplied; /* 150 set to 1 if background sub done */
int    astdiode; /* 152 */
unsigned int minblk; /* 154 min. # of strips per skips */
unsigned int numminblk; /* 156 # of min-blocks before geo skps */
double  calibpol[4]; /* 158 calibration coefficients */
unsigned int ADCrate; /* 190 ADC rate */
unsigned int ADCtype; /* 192 ADC type */
unsigned int ADCresolution; /* 194 ADC resolution */
unsigned int ADCbitAdjust; /* 196 ADC bit adjust */
unsigned int gain; /* 198 gain */
char    exprem[5][80]; /* 200 experiment remarks */
unsigned int geometric; /* 600 geometric operations rotate 0x01 */
char    xlabel[16]; /* 602 Intensity display string */
unsigned int cleans; /* 618 cleans */
unsigned int NumSkpPerCln; /* 620 number of skips per clean. */
char    califile[16]; /* 622 calibration file name (CSMA) */
char    bgdfile[16]; /* 638 background file name */
int     srccomp; /* 654 number of source comp. diodes */
unsigned int ydim; /* 656 y dimension of raw data. */
int     scramble; /* 658 0 = scrambled, 1 = unscrambled */
long    lexpos; /* 660 long exposure in milliseconds */
    /* used if exposure set to -1 */
long    lnoscan; /* 664 long num of scans */
    /* used if noscan set to -1 */
long    lavgexp; /* 668 long num of accumulations */
    /* used if avgexp set to -1 */
char    stripfil[16]; /* 672 stripe file (st130) */
char    version[16]; /* 688 version & date:"01.000 02/01/90" */
int     type; /* 704   1 = new120 (Type II) */
    /* 2 = old120 (Type I ) */
    /* 3 = ST130 */
    /* 4 = ST121 */
    /* 5 = ST138 */
    /* 6 = DC131 (PentaMAX) */
    /* 7 = ST133 (MicroMAX/SpectroMax), */
    /* 8 = ST135 (GPIB) */
    /* 9 = VIOCD */
    /* 10 = ST116 (GPIB) */
    /* 11 = OMA3 (GPIB) */
    /* 12 = OMA4 */
int     flatFieldApplied; /* 706 Set to 1 if flat field was applied */
int     spare[8]; /* 708 reserved */
int     kin_trig_mode; /* 724 Kinetics Trigger Mode */
char    empty[702]; /* 726 EMPTY BLOCK FOR EXPANSION */
float   clkspd_us; /* 1428 Vert Clock Speed in micro-sec */
int     HWaccumFlag; /* 1432 set to 1 if accum done by Hardware */
int     StoreSync; /* 1434 set to 1 if store sync used. */
int     BlemishApplied; /* 1436 set to 1 if blemish removal applied */
int     CosmicApplied; /* 1438 set to 1 if cosmic ray removal done */
int     CosmicType; /* 1440 if cosmic ray applied, this is type */
float   CosmicThreshold; /* 1442 Threshold of cosmic ray removal. */
long    NumFrames; /* 1446 number of frames in file. */
float   MaxIntensity; /* 1450 max intensity of data (future) */
float   MinIntensity; /* 1454 min intensity of data (future) */
char    ylabel[LABELMAX]; /* 1458 y axis label. */
unsigned int ShutterType; /* 1474 shutter type. */
float   shutterComp; /* 1476 shutter compensation time. */
unsigned int readoutMode; /* 1480 Readout mode, full, kinetics, etc. */
unsigned int WindowSize; /* 1482 window size for kinetics only. */
unsigned int clkspd; /* 1484 clock speed for kinetics & */
    /* frame transfer. */
unsigned int interface_type; /* 1486 computer interface (isa-taxi, */
    /* pcl, eisa, etc.) */
unsigned long ioAdd1; /* 1488 I/O address of interface card. */
unsigned long ioAdd2; /* 1492 if more than one address for card. */
unsigned long ioAdd3; /* 1496 */
unsigned int intLevel; /* 1500 interrupt level interface card */
```
Calibration Structures

There are three structures for the calibrations

- The Area Inside the Calibration Structure (below) is repeated two times.

\[
x_{calibration}, \quad y_{calibration},
\]

Start of X Calibration Structure

\[
\text{double} \quad \text{offset};
\]
\[
\text{double} \quad \text{factor};
\]
\[
\text{char} \quad \text{reserved1};
\]
\[
\text{char} \quad \text{reserved2}[40];
\]
\[
\text{char} \quad \text{calib_valid};
\]
\[
\text{char} \quad \text{input_unit};
\]
\[
\text{char} \quad \text{polynom_unit};
\]
\[
\text{char} \quad \text{polynom_order};
\]
\[
\text{char} \quad \text{calib_count};
\]
\[
\text{double} \quad \text{pixel_position}[10];
\]
\[
\text{double} \quad \text{calib_value}[10];
\]
\[
\text{double} \quad \text{calib_coeff}[6];
\]
\[
\text{double} \quad \text{laser_position};
\]
\[
\text{unsigned char} \quad \text{reserved3};
\]
\[
\text{unsigned char} \quad \text{new_calib_flag};
\]
\[
\text{char} \quad \text{calib_label}[81];
\]
\[
\text{char} \quad \text{expansion}[87];
\]
Appendix B Data Structure 173

Start of Y Calibration Structure

double offset; /* 3489 offset for absolute data scaling */
double factor; /* 3497 factor for absolute data scaling */
char current_unit; /* 3505 selected scaling unit */
char reserved1; /* 3506 reserved */
char string[40]; /* 3507 special string for scaling */
char reserved2[40]; /* 3547 reserved */
char calib_valid; /* 3587 flag if calibration is valid */
char input_unit; /* 3588 current input units for */
char "calib_value"; /* */
char polyomin_unit; /* 3589 linear UNIT and used */
char polyomin_order; /* 3590 ORDER of calibration POLYNOM */
char calib_count; /* 3591 valid calibration data pairs */
double pixel_position[10]; /* 3592 pixel pos. of calibration data */
double calib_value[10]; /* 3592 calibration VALUE at above pos */
double polyomin_coeff[6]; /* 3752 polyomin COEFFICIENTS */
double laser_position; /* 3752 laser wavenumber for relativ WN */
char reserved3; /* 3808 reserved */
unsigned char new_calib_flag; /* 3809 If set to 200, valid label below */
char calib_label[81]; /* 3810 Calibration label (NULL term'd) */
char expansion[87]; /* 3891 Calibration Expansion area */
char Istring[40]; /* 3978 special Intensity scaling string */
char empty3[80]; /* 4018 empty block to reach 4100 bytes */
int lastvalue; /* 4098 Always the LAST value in the header */

End of Calibration Structures

Version 2.5 Header (3/23/04)

The current data file used for WINX files consists of a 4100 (1004 Hex) byte header followed by the data. Beginning with Version 2.5, many more items were added to the header to make it a complete as possible record of the data collection. This includes spectrograph and pulser information. Many of these additions were accomplished by recycling old information that had not been used in previous versions. All data files created under previous 2.x versions of WinView/WinSpec CAN still be read correctly. HOWEVER, files created under the new versions (2.5 and higher) CANNOT be read by previous versions of WinView/WinSpec OR by the CSMA software package.

Start of Header Information (0 - 2996)

short ControllerVersion; 0 Hardware Version
short LogicOutput; 2 Definition of Output BNC
WORD AmpHiCapLowNoise; 4 Amp Switching Mode
WORD xDimDet; 6 Detector x dimension of chip.
short mode; 8 timing mode
float exp_sec; 10 alternative exposure, in sec.
short VChipXdim; 14 Virtual Chip X dim
short VChipYdim; 16 Virtual Chip Y dim
WORD yDimDet; 18 y dimension of CCD or detector.
char date [DATEMAX]; 20 date
short VirtualChipFlag; 30 On/Off
char Spare_1[2]; 32
short noscan; 34 Old number of scans - should always be -1
float DetTemperature; 36 Detector Temperature Set
short DetType; 40 CCD/DiodeArray type
WORD xdim; 42 actual # of pixels on x axis
<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>short stdiode</td>
<td>44</td>
<td>trigger diode</td>
</tr>
<tr>
<td>float DelayTime</td>
<td>46</td>
<td>Used with Async Mode</td>
</tr>
<tr>
<td>WORD ShutterControl</td>
<td>50</td>
<td>Normal, Disabled Open, Disabled Closed</td>
</tr>
<tr>
<td>short AbsorbLive</td>
<td>52</td>
<td>On/Off</td>
</tr>
<tr>
<td>WORD AbsorbMode</td>
<td>54</td>
<td>Reference Strip or File</td>
</tr>
<tr>
<td>short CanDoVirtualChipFlag</td>
<td>56</td>
<td>T/F Cont/Chip able to do Virtual Chip</td>
</tr>
<tr>
<td>short ThresholdMinLive</td>
<td>58</td>
<td>On/Off</td>
</tr>
<tr>
<td>float ThresholdMinVal</td>
<td>60</td>
<td>Threshold Minimum Value</td>
</tr>
<tr>
<td>short ThresholdMaxLive</td>
<td>64</td>
<td>On/Off</td>
</tr>
<tr>
<td>float ThresholdMaxVal</td>
<td>66</td>
<td>Threshold Maximum Value</td>
</tr>
<tr>
<td>short SpecAutoSpectroMode</td>
<td>70</td>
<td>T/F Spectrograph Used</td>
</tr>
<tr>
<td>float SpecCenterWlNm</td>
<td>72</td>
<td>Center Wavelength in Nm</td>
</tr>
<tr>
<td>short SpecGlueFlag</td>
<td>76</td>
<td>T/F File is Glued</td>
</tr>
<tr>
<td>float SpecGlueStartWlNm</td>
<td>78</td>
<td>Starting Wavelength in Nm</td>
</tr>
<tr>
<td>float SpecGlueEndWlNm</td>
<td>82</td>
<td>Starting Wavelength in Nm</td>
</tr>
<tr>
<td>float SpecGlueMinOvrlpNm</td>
<td>86</td>
<td>Minimum Overlap in Nm</td>
</tr>
<tr>
<td>float SpecGlueFinalResNm</td>
<td>90</td>
<td>Final Resolution in Nm</td>
</tr>
<tr>
<td>short PulserType</td>
<td>94</td>
<td>0=None, PG200=1, PTG=2, DG535=3</td>
</tr>
<tr>
<td>short CustomChipFlag</td>
<td>96</td>
<td>T/F Custom Chip Used</td>
</tr>
<tr>
<td>short XPrePixels</td>
<td>98</td>
<td>Pre Pixels in X direction</td>
</tr>
<tr>
<td>short XPPostPixels</td>
<td>100</td>
<td>Post Pixels in X direction</td>
</tr>
<tr>
<td>short YPrePixels</td>
<td>102</td>
<td>Pre Pixels in Y direction</td>
</tr>
<tr>
<td>short YPPostPixels</td>
<td>104</td>
<td>Post Pixels in Y direction</td>
</tr>
<tr>
<td>short asynchon</td>
<td>106</td>
<td>asynchronous enable flag = 0 = off</td>
</tr>
<tr>
<td>short datatype</td>
<td>108</td>
<td>experiment datatype</td>
</tr>
<tr>
<td>WORD PulserType</td>
<td>110</td>
<td>Repetitive/Sequential</td>
</tr>
<tr>
<td>WORD PulserOnChipAccums</td>
<td>112</td>
<td>Num PTG On-Chip Accums</td>
</tr>
<tr>
<td>DWORD PulserRepeatExp</td>
<td>114</td>
<td>Num Exp Repeats (Pulser SW Accum)</td>
</tr>
<tr>
<td>float PulseRepWidth</td>
<td>118</td>
<td>Width Value for Repetitive pulse (usec)</td>
</tr>
<tr>
<td>float PulseRepDelay</td>
<td>122</td>
<td>Width Value for Repetitive pulse (usec)</td>
</tr>
<tr>
<td>float PulseSeqStartWidth</td>
<td>126</td>
<td>Start Width for Sequential pulse (usec)</td>
</tr>
<tr>
<td>float PulseSeqEndWidth</td>
<td>130</td>
<td>End Width for Sequential pulse (usec)</td>
</tr>
<tr>
<td>float PulseSeqStartDelay</td>
<td>134</td>
<td>Start Delay for Sequential pulse (usec)</td>
</tr>
<tr>
<td>float PulseSeqEndDelay</td>
<td>138</td>
<td>End Delay for Sequential pulse (usec)</td>
</tr>
<tr>
<td>short PulseSeqIncMode</td>
<td>142</td>
<td>Increments: 1=Fixed, 2=Exponential</td>
</tr>
<tr>
<td>short PIMaxUsed</td>
<td>144</td>
<td>PIMax type controller flag</td>
</tr>
<tr>
<td>short PIMaxMode</td>
<td>146</td>
<td>PIMax mode</td>
</tr>
<tr>
<td>short PIMaxGain</td>
<td>148</td>
<td>PIMax Gain</td>
</tr>
<tr>
<td>short BackGrndApplied</td>
<td>150</td>
<td>1 if background subtraction done</td>
</tr>
<tr>
<td>short PIMax2nsBrdUsed</td>
<td>152</td>
<td>T/F PI-Max 2ns Board Used</td>
</tr>
<tr>
<td>WORD minblk</td>
<td>154</td>
<td>min. # of strips per skips</td>
</tr>
<tr>
<td>WORD numminblk</td>
<td>156</td>
<td># of min-blocks before geo skps</td>
</tr>
<tr>
<td>short SpecMirrorLocation[2]</td>
<td>158</td>
<td>Spectro Mirror Location, 0=Not Present</td>
</tr>
<tr>
<td>short SpecSlitLocation[4]</td>
<td>162</td>
<td>Spectro Slit Location, 0=Not Present</td>
</tr>
<tr>
<td>short CustomTimingFlag</td>
<td>170</td>
<td>T/F Custom Timing Used</td>
</tr>
<tr>
<td>char ExperimentTimeLocal[TIMEMAX]</td>
<td>172</td>
<td>Experiment Local Time as hhmmss\0</td>
</tr>
<tr>
<td>char ExperimentTimeUTC[TIMEMAX]</td>
<td>179</td>
<td>Experiment UTC Time as hhmmss\0</td>
</tr>
<tr>
<td>short ExposUnits</td>
<td>186</td>
<td>User Units for Exposure</td>
</tr>
<tr>
<td>WORD ADCCoffset</td>
<td>188</td>
<td>ADC offset</td>
</tr>
<tr>
<td>WORD ADCrate</td>
<td>190</td>
<td>ADC rate</td>
</tr>
<tr>
<td>WORD ADCtype</td>
<td>192</td>
<td>ADC type</td>
</tr>
<tr>
<td>WORD ADCresolution</td>
<td>194</td>
<td>ADC resolution</td>
</tr>
<tr>
<td>WORD ADCbitAdjust</td>
<td>196</td>
<td>ADC bit adjust</td>
</tr>
<tr>
<td>WORD gain</td>
<td>198</td>
<td>gain</td>
</tr>
<tr>
<td>char Comments[5][COMMENTMAX]</td>
<td>200</td>
<td>File Comments</td>
</tr>
<tr>
<td>WORD geometric</td>
<td>600</td>
<td>geometric ops: rotate 0x01, reverse</td>
</tr>
<tr>
<td>char xlabel[LABELMAX]</td>
<td>602</td>
<td>intensity display string</td>
</tr>
<tr>
<td>WORD cleans</td>
<td>618</td>
<td>cleans</td>
</tr>
<tr>
<td>WORD NumSkpPerCln</td>
<td>620</td>
<td>number of strips per clean.</td>
</tr>
<tr>
<td>short AutoCleansActive</td>
<td>642</td>
<td>T/F</td>
</tr>
<tr>
<td>short UseContCleansInst</td>
<td>644</td>
<td>T/F</td>
</tr>
<tr>
<td>short AbsorbStripNum</td>
<td>646</td>
<td>Absorbance Strip Number</td>
</tr>
<tr>
<td>float SpecSlitPosUnits</td>
<td>648</td>
<td>Spectrograph Slit Position Units</td>
</tr>
<tr>
<td>float SpecGrooves</td>
<td>650</td>
<td>Spectrograph Grating Grooves</td>
</tr>
<tr>
<td>Variable</td>
<td>Type</td>
<td>Offset</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>short srccmp</td>
<td>654</td>
<td></td>
</tr>
<tr>
<td>WORD ydim</td>
<td>656</td>
<td></td>
</tr>
<tr>
<td>short scramble</td>
<td>658</td>
<td></td>
</tr>
<tr>
<td>short ContinuousCleansFlag</td>
<td>660</td>
<td></td>
</tr>
<tr>
<td>short ExternalTriggerFlag</td>
<td>662</td>
<td></td>
</tr>
<tr>
<td>long lnoscan</td>
<td>664</td>
<td></td>
</tr>
<tr>
<td>long lavgexp</td>
<td>668</td>
<td></td>
</tr>
<tr>
<td>float ReadoutTime</td>
<td>672</td>
<td></td>
</tr>
<tr>
<td>short TriggeredModeFlag</td>
<td>676</td>
<td></td>
</tr>
<tr>
<td>char Spare_2[10]</td>
<td>678</td>
<td></td>
</tr>
<tr>
<td>char sw_version[FILEVERMAX]</td>
<td>688</td>
<td></td>
</tr>
<tr>
<td>short type</td>
<td>704</td>
<td></td>
</tr>
<tr>
<td>short flatFieldApplied</td>
<td>706</td>
<td></td>
</tr>
<tr>
<td>char Spare_3[16]</td>
<td>708</td>
<td></td>
</tr>
<tr>
<td>short kin_trig_mode</td>
<td>724</td>
<td></td>
</tr>
<tr>
<td>char diabel[LABELMAX]</td>
<td>726</td>
<td></td>
</tr>
<tr>
<td>char Spare_4[436]</td>
<td>742</td>
<td></td>
</tr>
<tr>
<td>char PulseFileName[HDRNAMEMAX]</td>
<td>1178</td>
<td></td>
</tr>
<tr>
<td>char AbsorbFileName[HDRNAMEMAX]</td>
<td>1298</td>
<td></td>
</tr>
<tr>
<td>DWORD NumExpRepeats</td>
<td>1418</td>
<td></td>
</tr>
<tr>
<td>DWORD NumExpAccums</td>
<td>1422</td>
<td></td>
</tr>
<tr>
<td>short YT_Flag</td>
<td>1426</td>
<td></td>
</tr>
<tr>
<td>float clkspd_us</td>
<td>1428</td>
<td></td>
</tr>
<tr>
<td>short StoreSync</td>
<td>1432</td>
<td></td>
</tr>
<tr>
<td>short BlemishApplied</td>
<td>1436</td>
<td></td>
</tr>
<tr>
<td>short CosmicApplied</td>
<td>1438</td>
<td></td>
</tr>
<tr>
<td>short CosmicType</td>
<td>1440</td>
<td></td>
</tr>
<tr>
<td>float CosmicThreshold</td>
<td>1442</td>
<td></td>
</tr>
<tr>
<td>long NumFrames</td>
<td>1446</td>
<td></td>
</tr>
<tr>
<td>float MaxIntensity</td>
<td>1450</td>
<td></td>
</tr>
<tr>
<td>float MinIntensity</td>
<td>1454</td>
<td></td>
</tr>
<tr>
<td>char ylabel[LABELMAX]</td>
<td>1458</td>
<td></td>
</tr>
<tr>
<td>WORD ShutterType</td>
<td>1474</td>
<td></td>
</tr>
<tr>
<td>float shutterComp</td>
<td>1476</td>
<td></td>
</tr>
<tr>
<td>WORD readoutMode</td>
<td>1480</td>
<td></td>
</tr>
<tr>
<td>WORD WindowSize</td>
<td>1482</td>
<td></td>
</tr>
<tr>
<td>WORD clkspd</td>
<td>1484</td>
<td></td>
</tr>
<tr>
<td>WORD interface_type</td>
<td>1486</td>
<td></td>
</tr>
<tr>
<td>short NumROIsInExperiment</td>
<td>1488</td>
<td></td>
</tr>
<tr>
<td>char Spare_5[16]</td>
<td>1490</td>
<td></td>
</tr>
<tr>
<td>WORD controllerNum</td>
<td>1506</td>
<td></td>
</tr>
<tr>
<td>WORD SWmade</td>
<td>1508</td>
<td></td>
</tr>
<tr>
<td>short NumROI</td>
<td>1510</td>
<td></td>
</tr>
<tr>
<td>struct ROIinfo{</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WORD startx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WORD endx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WORD groupx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WORD starty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WORD endy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WORD groupy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Calibration Structures

There are three structures for the calibrations

- The Area Inside the Calibration Structure (below) is repeated two times.

```c
// Start of X Calibration Structure (3000 - 3488)
double offset;    // 3000 offset for absolute data scaling
double factor;    // 3008 factor for absolute data scaling
char current_unit; // 3016 selected scaling unit
char reserved1;   // 3017 reserved
char string[40];  // 3018 special string for scaling
char reserved2[40]; // 3058 reserved
char calib_valid; // 3098 flag if calibration is valid
char input_unit;  // 3099 current input units for "calib_value"
char polynom_unit; // 3100 linear UNIT and used in the "polynom_coeff"
char polynom_order; // 3101 ORDER of calibration POLYNOM
char calib_count; // 3102 valid calibration data pairs
double pixel_position[10]; // 3103 pixel pos. of calibration data
double calib_value[10]; // 3183 calibration VALUE at above pos
double polynom_coeff[6]; // 3263 polynomial COEFFICIENTS
double laser_position; // 3311 laser wavenumber for relativ WN
char reserved3; // 3319 reserved
BYTE new_calib_flag; // 3320 If set to 200, valid label below
char calib_label[81]; // 3321 Calibration label (NULL term'd)
char expansion[87]; // 3402 Calibration Expansion area
```

```c
// Start of Y Calibration Structure (3489 - 3977)
```

```c
long WinView_id; // 2996 == 0x01234567L if file created by WinX
```
Appendix B Data Structure

double polynom_coeff[6] 3752 polynom COEFFICIENTS
double laser_position 3800 laser wavenumber for relativ WN
char reserved3 3808 reserved
BYTE new_calib_flag 3809 If set to 200, valid label below
char calib_label[81] 3810 Calibration label (NULL term'd)
char expansion[87] 3891 Calibration Expansion area

End of Calibration Structures (3978-4098)

char Istring[40] 3978 special intensity scaling string
char Spare_6[25] 4018
BYTE SpecType 4043 spectrometer type (acton, spex, etc.)
BYTE SpecModel 4044 spectrometer model (type dependent)
BYTE PulseBurstCount 4046 pulser triggers per burst
double PulseBurstPeriod 4050 pulser burst period (in usec)
BYTE PulseBracketCount 4058 pulser bracket pulsing on/off
BYTE PulseBracketType 4059 pulser bracket pulsing type
double PulseTimeConstFast 4060 pulser slow exponential time constant (in usec)
double PulseAmplitudeFast 4068 pulser fast exponential amplitude constant
double PulseTimeConstSlow 4076 pulser slow exponential time constant (in usec)
double PulseAmplitudeSlow 4084 pulser slow exponential amplitude constant
short AnalogGain; 4092 analog gain
short AvGainUsed 4094 avalanche gain was used
short AvGain 4096 avalanche gain value
short lastvalue 4098 Always the LAST value in the header

Start of Data (4100 -)
4100 Start of Data
.
.

Definition of Array Sizes

HDRNAMEMAX = 120 Max char str length for file name
USERINFOMAX = 1000 User information space
COMMENTMAX = 80 User comment string max length (5 comments)
LABELMAX = 16 Label string max length
FILEVERMAX = 16 File version string max length
DATEMAX = 10 String length of file creation date string as ddmmyyyy\0
ROIMAX = 10 String length of roi array of structures
TIMEMAX = 7 Max time store as hhmmss\0

Custom Data Types Used In the Structure

BYTE = unsigned char
WORD = unsigned short
DWORD = unsigned long
Reading Data

The data follows the header beginning at offset 4100. In WinView/WinSpec, the data is always stored exactly as it is collected. The order of the data depends on the placement of the shift register. In the diagram below, the shift register is on the RIGHT SIDE of the chip. Each COLUMN of data is first shifted RIGHT into the shift register and then DOWN. The data is read (and stored) in this order:

First column read: $X_{nY_m}, X_{nY_{m-1}}, \ldots, X_{nY_2}, X_{nY_1}$
Last column read: $X_{1Y_m}, X_{1Y_{m-1}}, \ldots, X_{1Y_2}, X_{1Y_1}$

In the diagram below, the shift register is on the BOTTOM of the chip. Each ROW of data is first shifted DOWN into the shift register and then RIGHT. The data is read (and stored) in this order:

First row read: $X_{nY_m}, \ldots, X_{2Y_m}, X_{1Y_m}$
Last row read: $X_{nY_1}, \ldots, X_{2Y_1}, X_{1Y_1}$

The data is stored as sequential points and the X, Y, and Frame dimensions are determined by the header.

The X dimension of the stored data is in "$xdim$" (Offset 42).
The Y dimension of the stored data is in "$ydim$" (Offset 656).
The size of a frame (in bytes) is:

One frame size = "$xdim" x "$ydim" x "datatype" (Offset 108)

The number of frames of data stored is in "$NumFrames$" (Offset 1446).
Although not common, there are CD drives that are not compatible with the Win ’95 long filename convention. Attempting to install on such a system causes the filenames to be truncated and the install fails, causing a message like:

An error occurred during the move data process: -113
Component: Application\WinXSystem
File Group: WinXSystem

Fortunately there are a couple of workarounds, both involving copying the install files to the customer’s hard drive first, then installing the software from that location.

1. If possible, copy the files to the customer’s hard drive via another computer that supports long file names. If the customer’s computer is part of a network then the files can be copied first to the hard drive of a computer that supports long file names, then transferred through the network to the customer’s hard drive. Check the list of files below to make sure that the long filenames remain intact. Then install the software from this location on the hard drive.

2. Copy the files to the customer’s hard drive from the customer’s CD-ROM, then fix the names of the files that were truncated. There are only 7 files that are not DOS compatible (8 + 3), so this at most a 10 minute job. Here are their abbreviated and full filenames. (Not all of these files are used in the standard installation but all are present on the CD.)

- CLSSNA~1.CLS, rename to clsSnapIn.cls
- PIXCMT~1.DLL, rename to PIXCMTXT32.dll
- WINX_R~1.DOC, rename to WinX_readme.doc
- WINX32~1.BAS, rename to Winx32Test.bas
- WINX32~1.DOC, rename to Winx32 Automation - VB Version.doc
- WINX32~1.FRM, rename to Winx32Test.frm
- WINX32~1.FRX, rename to Winx32Test.frx
Appendix D
WinView/32 Repair and Maintenance

Note: When WinView/32 is installed, it modifies the Windows Registry file. If for any reason you reinstall Windows, the Registry file may be replaced, and WinView/32 may not run correctly. Reinstall WinView/32 to correct this problem.

Install/Uninstall WinView/32 Components at a Later Time

After you have installed WinView/32, you may want to install additional WinView/32 files or to uninstall selected files. To do so:

1. Start the installation program and on the WinSpec, WinView, WinXTest Selection dialog box (Figure 151), select **Install WinView/32 for Windows**.

2. Because WinView/32 was previously installed, the **WinView Maintenance** dialog box (Figure 152) will be displayed.
3. Select the **Modify** radio button and click on **Next**.

4. On the **Media Password** dialog box, enter the password and click on **Next**.
5. On the Select Components dialog box, put a check in the box for each item you want to install and uncheck the box for each item you want to uninstall.

6. Then click on Next and follow the instructions on the dialog boxes.

7. Click on the Finish button when the Maintenance Complete dialog box is displayed. The WinSpec, WinView, WinXTest Install dialog box will be displayed after the changes have been made.

8. Exit from the installation program or choose another program to install, perform maintenance on, or uninstall.

Installing More than One Version of WinView/32

You can install more than one version of WinView/32, WinSpec/32 or any combination of the two on a single computer. When the Choose Destination Location dialog box is displayed, simply change the path to a new directory. If necessary, the install program will automatically create the new directory.

Caution

Do not install both the WinView/32 and WinSpec/32 software packages in the same directory.

Caution

Although several different versions of WinView/32 and/or WinSpec/32 can be installed on the same computer without conflicts, you should not run more than one version at any one time. The manner in which Princeton Instruments software allocates memory for data collection precludes collecting data using two software packages at once.

It is also possible to install both 16-bit and 32-bit versions of the software in the same computer. However, keep in mind that WinView/32 will not operate under Windows 3.1 or 3.11. Similarly, the device drivers for the 16-bit version of WinView will not function properly under Win 95 or NT.

PIHWDEF.INI & SESSION.DAT

WinView/16 and PIHWDEF.INI: The hardware initialization file PIHWDEF.INI, is included with 16-bit versions of WinView software. The file contains all of the hardware settings necessary to get started and is read the first time WinView is executed. At the end of the first operating session, the settings in effect are written to SESSION.DAT, which is read the next time WinView software is operated so that the new session will begin with the same settings that were in effect at the end of the previous one.

WinView/32 and the Windows Registry: WinView/32 doesn’t need PIHWDEF.INI or SESSION.DAT, because it automatically stores the settings in the registry at the end of each operating session. However, WinView/32 will read the WinView/16 PIHWDEF.INI or SESSION.DAT if they are copied to the directory containing the WinView/32 software. This allows users who are upgrading from a 16-bit version of WinView to WinView/32 to transfer their previous operating settings to the new software. However, there is a constraint: if there are settings in the registry (i.e., WinView/32 has been operated at least once), the software won’t read PIHWDEF.INI or SESSION.DAT unless the file date is newer than the date of the stored registry settings. This problem can be avoided by simply copying PIHWDEF.INI or SESSION.DAT to the WinView/32 directory before operating it the first time. If that opportunity is lost, a newer SESSION.DAT can be created by booting the 16-bit WinView.
software and then exiting the program in the usual manner. Similarly, a text editor could be used to open/edit a copy of PIHWDEF.INI and then save it so that it has the current date.

Uninstalling and Reinstalling

If you suspect any of the WinView/32 files have become corrupt, you should first delete all WinView/32 files, then reinstall the software from the CD or the FTP site. Follow the steps below to remove WinView/32. Note that some files may remain. They will have to be removed manually. *To reinstall, follow the procedure as described beginning on page 17.*

To uninstall WinView/32 from your computer:

1. Open the **Windows Control Panel**.
2. Double-click on **Add/Remove Programs**.
3. Highlight the WinView/32 version to uninstall and click on **Add/Remove**.

Notes:

1. The directory in which WinView/32 was originally installed will remain, as will any files it contains that were not placed there during the original installation.
2. The Data directory created during the original installation may also be deleted. Any data files you want to save should be copied to a safe location before uninstalling.
3. The Version # and User identification will be removed from the registry. However, the registry also contains much information that was placed there in the course of setting up and operating the software. That information will remain and will be available for use if WinView/32 is later reinstalled.
4. Follow the instructions on the dialog boxes.

To later reinstall the software, follow the Installing WinView/32 instructions provided earlier in this chapter. Use the original installation CD and any options disks purchased separately.
The following information covers the currently known limitations associated with operating under the USB 2.0 interface.

- Maximum cable length is 5 meters (16.4 feet)
- 1 MHz is currently the upper digitization rate limit for the ST-133 Controller.
- Large data sets and/or long acquisition times may be subject to data overrun because of host computer interrupts during data acquisition.
- USB 2.0 is not supported by the Princeton Instruments PC Interface Library (Easy DLLS).
- Some WinView/WinSpec 2.5.X features are not fully supported with USB 2.0. See the table below.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Supported with USB 2.0 in WinX 2.5.X</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demo Port Capability</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>DIF</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>Kinetics</td>
<td>YES</td>
<td>WinX 2.5.18.1</td>
</tr>
<tr>
<td>Reset Camera to NVRAM Defaults</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>Temperature Lock Status</td>
<td>YES</td>
<td>WinX 2.5.x doesn’t utilize hardware lock status</td>
</tr>
<tr>
<td>PTG</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Virtual Chip</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>Custom Timing</td>
<td>YES</td>
<td>WinX 2.5.18.1</td>
</tr>
<tr>
<td>Custom Chip</td>
<td>YES</td>
<td>WinX 2.5.18.1</td>
</tr>
<tr>
<td>Frames per Interrupt</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>RS170 (Video Output)</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>Online Exposure</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>File Information</td>
<td>YES</td>
<td>Not all header info is currently available in WinX 2.5.x through PVCAM</td>
</tr>
<tr>
<td>Overlapping ROIs</td>
<td>NO</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Features Supported under USB 2.0 (continued on next page)
<table>
<thead>
<tr>
<th>Feature</th>
<th>Supported with USB 2.0 in WinX 2.5.X</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro Record</td>
<td>YES</td>
<td>Macros recorded for non-PVCAM cameras may have to be re-recorded to function</td>
</tr>
<tr>
<td>TTL I/O</td>
<td>NO</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Features Supported under USB 2.0
Troubleshooting

Introduction

The following information is provided for troubleshooting communication errors that may occur when computer-controller communication uses the USB 2.0 protocol.

Camera1 (or similar name) on Hardware Setup dialog box

When a PVCAM-based camera is detected/selected during the Camera Detection Wizard (formerly the Hardware Wizard), a default name such as Camera1 will be shown in the Detected Hardware table and will be entered in the Controller Type on the Setup|Hardware|Controller/CCD tab page. Because this name is not particularly descriptive, you may want to change it. Such a change is made by editing the PVCAM.INI file that is generated by Camera Detection Wizard (or by the RSConfig.exe if you have a software version 2.5.19.0 or earlier).

To change the default Controller Type name:

1. Using Notepad or a similar text editor, open PVCAM.INI, which is located in the Windows directory (C:\WINNT, for example). You should see entries like the ones below.

 [Camera_1]
 Type=1
 Name=Camera1
 Driver=apausb.sys
 Port=0
 ID=523459

2. Change the "Name=" entry to something more meaningful for you (for example, ST133USB - to indicate that this is a PVCAM-based system using an ST-133 with a USB 2.0 interface) and save the edited file.

 [Camera_1]
 Type=1
 Name=ST133USB
 Driver=apausb.sys
 Port=0
 ID=523459

3. The new Controller Type name will now appear in the Controller Type field.
Controller Is Not Responding

If this message pops up when you click on OK after selecting the "Interface Type" during Hardware Setup (under the WinView/32 Setup menu), the system has not been able to communicate with the Controller. Check to see if Controller has been turned ON and if the interface card, its driver, and the interface cable have been installed.

- If the Controller is ON, the problem may be with the interface card, its driver, interrupt or address conflicts, or the cable connections.

- If the interface card is not installed, close the application program and turn the Controller OFF. Follow the interface card installation instructions in provided with your interface card and cable the card to the SERIAL COM port on the rear of the Controller. Then do a "Custom" installation of WinView/32 with the appropriate interface component selected: "PCI Interface" or "ISA Interface", depending on the interface card type. Be sure to deselect the interface component that does not apply to your system.

 Note: WinX (versions 2.6.0 and higher) does not support the ISA interface.

- If the interface card is installed in the computer and is cabled to the SERIAL COM port on the rear of the Controller, close the application program and turn the Controller OFF. Check the cable connections and tighten the locking screws if the connections are loose.

- If the interface card was installed after WinView/32 has been installed, close that application and do a "Custom" installation of it with the appropriate interface component selected: "PCI Interface" or "ISA Interface", depending on the interface card type. Be sure to deselect the interface component that does not apply to your system.

 Note: WinX (versions 2.6.0 and higher) does not support the ISA interface.

Data Loss or Serial Violation

You may experience either or both of these conditions if the host computer has been set up with Power Saving features enabled. This is particularly true for power saving with regard to the hard drive. Make sure that Power Saving features are disabled while you are running WinView/32.

Data Overrun Due to Hardware Conflict message

Figure 156. Data Overrun Due to Hardware Conflict dialog box

If this dialog box appears when you try to acquire a test image, acquire data, or run in focus mode, check the CCD array size and then check the DMA buffer size. A large array (for example, a 2048x2048 array), requires a larger DMA buffer larger setting than that for a smaller array (for example, a 512x512 array).
To change the DMA buffer setting:

1. Note the array size (on the Setup|Hardware|Controller/CCD tab page or the Acquisition|Experiment Setup|Main tab page Full Chip dimensions).
2. Open Setup|Environment|Environment dialog box.
3. Increase the DMA buffer size to a minimum of 32 Mb (64 Mb if it is currently 32 Mb or 128 Mb if it is currently 64 Mb), click on OK, and close WinView.
4. Reboot your computer.
5. Restart WinView and begin acquiring data or focusing. If you see the message again, increase the DMA buffer size.

Data Overrun Has Occurred message

Because of memory constraints and the way that USB transfers data, a "Data overrun has occurred" message may be displayed during data acquisition. If this message is displayed, take one or more of the following actions:

1. Minimize the number of programs running in the background while you are acquiring data with WinView/32.
2. Run data acquisition in Safe Mode.
3. Add memory.
4. Use binning.
5. Increase the exposure time.
6. Defragment the hard disk.
7. Update the Orange Micro USB2 driver. See "OrangeUSB USB 2.0 Driver Update", page 195.

If the problem persists, your application may be USB 2.0 bus limited. Since the host computer controls the USB 2.0 bus, there may be situations where the host computer interrupts the USB 2.0 port. In most cases, the interrupt will go unnoticed by the user. However, there are some instances when the data overrun cannot be overcome because USB 2.0 bus limitations combined with long data acquisition times and/or large data sets increase the possibility of an interrupt while data is being acquired. If your experiment requirements include long data acquisition times and/or large data sets, your application may not be suitable for the USB 2.0 interface. Therefore, we recommend replacement of the USB 2.0 interface module with our TAXI interface module and Princeton Instruments (RSPI) high speed PCI card. If this is not the case and data overruns continue to occur, contact Customer Support (see page 204 for contact information).

Demo is only Choice on Hardware Wizard:Interface dialog (Versions 2.5.19.0 and earlier)

If RSConfig.exe has not been run and there is not an installed Princeton Instruments (RSPI) high speed PCI card, the Hardware Wizard will only present the choice "Demo" in the Interface dialog box (Figure 157). Clicking on Next presents an "Error Creating Controller. Error=129." message, clicking on OK presents "The Wizard Can Not Continue Without a Valid Selection!" message, clicking on OK presents the Interface dialog box again.
At this point, you will need to exit WinView and run the RSConfig.exe program, which creates a file called PVCAM.INI. This file contains information required to identify the interface/camera and is referenced by the Hardware Wizard when you are setting up WinView/32 with USB for the first time:

1. If you have not already done so, close WinView/32.
2. Make sure the ST-133 is connected to the host computer and that it is turned on.
3. Run RSConfig from the **Windows|Start|Programs|Roper Scientific** menu or from the directory where you installed WinView.
4. When the RSConfig dialog box (Figure 158) appears, you can change the camera name to one that is more specific or you can keep the default name "Camera1". When you have finished, click on the **Done** button.

5. You should now be able to open WinView and, from **Setup|Hardware…**, run the Hardware Wizard.

6. When the PVCAM dialog box (Figure 159) is displayed, click in the **Yes** radio button, click on **Next** and continue through the Wizard. After the Wizard is finished, the **Controller/Camera** tab card will be displayed with the **Use PVCAM** checkbox selected. You should now be able to set up experiments and acquire data.
Demo, High Speed PCI, and PCI(Timer) are Choices on Hardware Wizard:Interface dialog (Versions 2.5.19.0 and earlier)

If there is an installed Princeton Instruments (RSPI) high speed PCI card in the host computer and you want to operate a camera using the USB 2.0 interface, the PVCAM.INI file (created by RSConfig.exe) must exist and the USB 2.0 supported camera must be [Camera_1]. PVCAM.INI, which contains information required to identify the interface/camera, is referenced by the Hardware Wizard when you are setting up WinView/32 with USB for the first time. If the Wizard did not find a PVCAM.INI file or if RSConfig.exe was run but the USB 2.0 camera is [Camera_2] in the PVCAM.INI file, "Demo", "High Speed PCI", and "PCI(Timer)" will be selectable from the Wizard's Interface dialog box.

At this point, you will need to run the RSConfig.exe program:

1. If you have not already done so, close WinView/32.
2. Make sure the ST-133 is connected to the host computer and that it is turned on.
3. Run RSConfig from the Windows\Start\Programs\Roper Scientific menu or from the directory where you installed WinView.
4. When the RSConfig dialog box (Figure 161) appears, you can change the camera name to one that is more specific or you can keep the default name "Camera2". When you have finished, click on the Done button. You will next edit the generated PVCAM.INI file.
5. Using Notepad or a similar text editor, open PVCAM.INI, which is located in the Windows directory (C:\WINNT, for example).

If the contents of the file look like: Change the headings so the contents now look like:

```
[Camera_1]  [Camera_2]
Type=1       Type=1
Name=Camera1 Name=Camera1
Driver=rspipci.sys Driver=rspipci.sys
Port=0       Port=0

[Camera_2]  [Camera_1]
Type=1       Type=1
Name=Camera2 Name=Camera2
Driver=apausb.sys Driver=apausb.sys
Port=0       Port=0
```

Note: The [Camera_#] must be changed so the camera supported by the USB interface will be recognized (the USB driver is "apausb.sys"). For consistency, you may also want to change the camera names.

6. Save the file. With the ST-133 connected and on, open WinView/32.

7. Run the Hardware Wizard.

8. When the PVCAM dialog box (Figure 162) is displayed, click in the Yes radio button, click on Next and continue through the Wizard. After the Wizard is finished, the Controller/Camera tab card will be displayed with the Use PVCAM checkbox selected. You should now be able to acquire data.
Detector Temperature, Acquire, and Focus are Grayed Out (Versions 2.5.19.0 and earlier)

These functions and others will be deactivated if you have installed a camera being run under USB 2.0 and have opened WinView/32 without having first turned on the ST-133. They will also be deactivated if you have installed a camera being run under USB 2.0 and a Princeton Instruments (RSPI) high speed PCI card was also detected when RSConfig.exe was run.

1. Check to see if the ST-133 is connected to the host computer and is turned on. If it is not connected or is connected but not turned on, go to Step 2. If it is connected and on, go to Step 3.

2. Close WinView, verify that the ST-133 is connected to the host computer, turn on the ST-133, and reopen WinView. The formerly grayed out functions should now be available.

3. If the ST-133 is connected and on, the USB 2.0 camera may not be listed as Camera 1 in the PVCAM.INI file.

4. Run RSConfig.exe (accessible from the Windows|Start|Programs|Roper Scientific menu). If the USB 2.0 camera is listed as Camera 2 (Princeton Style (USB2) in Figure 163), you will have to edit the PVCAM.INI file.

5. Using Notepad or a similar text editor, open PVCAM.INI, which is located in the Windows directory (C:\WINNT, for example).

If the contents of the file look like: Change the headings so the contents now look like:

```
[Camera_1]     [Camera_2]
Type=1          Type=1
Name=Camera1    Name=Camera1
Driver=rspipci.sys Driver=rspipci.sys
Port=0          Port=0
```

```
[Camera_2]     [Camera_1]
Type=1          Type=1
Name=Camera2    Name=Camera2
Driver=apausb.sys Driver=apausb.sys
Port=0          Port=0
```

![Figure 163. RSConfig dialog box: Two Camera Styles](image)
Note: The [Camera_#] must be changed so the camera supported by the USB interface will be recognized (the USB driver is "apausb.sys"). For consistency, you may also want to change the camera names.

6. Save the file. With the ST-133 connected and on, open WinView/32. The formerly grayed out functions should now be available.

Error Creating Controller message

This message may be displayed if you are using the USB 2.0 interface and have not run the RSConfig.exe program (see previous topic), if the PVCAM.INI file has been corrupted, or if the ST-133 was not turned on before you started WinView/32 and began running the Hardware Wizard.

Error 129: Indicates that the problem is with the PVCAM.INI file. Close WinView/32, run RSConfig, make sure the ST-133 is on, reopen WinView, and begin running the Hardware Wizard.

Error 183: Indicates that the ST-133 is off. If you are running the Hardware Wizard when this message appears, click on OK, turn on the ST-133, and, on the PVCAM dialog box, make sure Yes is selected and then click on Next. The Hardware Wizard should continue to the Controller Type dialog box.

No CCD Named in the Hardware Wizard: CCD dialog (Versions 2.5.19.0 and earlier)

If you have installed a USB 2.0 Interface Module in your ST-133, a blank field may be displayed in the Detector/Camera/CCD dialog box (Figure 165) if the ST-133 controller was made before January 2001. Earlier versions of the ST-133 did not contain non-volatile RAM (NVRAM), which is programmed with information about the controller and the camera. PVCAM, the program under which the Princeton Instruments USB works, retrieves the information stored in NVRAM so it can enter specific camera characteristics into WinView/32.
Check the serial label on underside of your controller. If the first five characters are D1200 (December 2000) or earlier (J0797 or July 1997, for example), contact Customer Support to find out about an NVRAM controller upgrade.

OrangeUSB USB 2.0 Driver Update

This procedure is highly recommended when a laptop computer will be used to communicate with the ST-133. We recommend the SIIG, Inc. USB 2.0 PC Card, Model US2246 if USB 2.0 is not native to the laptop's motherboard. To reduce the instances of data overruns and serial violations, the OrangeUSB USB 2.0 Host Controller installed for the SIIG card should be replaced by the appropriate Microsoft driver (Windows 2000 or Windows XP, depending on the laptop's operating system.)

Note: This procedure may also be performed for desktop computers that use the Orange Micro 70USB90011 USB2.0 PCI.

1. Download and install Microsoft Service Pack 4 (for Windows 2000) or Service Pack 1 (for Windows XP) if the service pack has not been installed.
2. From the Windows Start menu, select Settings|Control Panel.
3. Select System and then System Properties.
4. Select the Hardware tab and click on Device Manager button.
5. Expand Universal Serial Bus Controllers.
6. Right-mouse click on OrangeUSB USB 2.0 Host Controller and select Properties.
7. On the Driver tab, click on the Update Driver… button. You may have to wait a minute or so before you will be allowed to click on the button.
8. When the Upgrade Device Driver Wizard appears, click on Next. Select the Search for a suitable driver … radio button.
9. On the next screen select the Specify a location checkbox.
10. Browse and select the location. Click on OK.
11. In the Driver Files Search Results window, check the Install one of the other drivers check box.
12. Select the NEC PCI to USB Enhanced Host Controller B1 driver. Click on Next and the installation will take place. When the Completing the Upgrade Device Driver Wizard window appears, click on Finish. You will then be given the choice of restarting the computer now or later. According to the window text, the hardware associated with the driver will not work until you restart the computer.
Program Error message

This dialog may appear if you have tried to acquire a test image, acquire data, or run in focusing mode and the DMA buffer size is too small. A large array (for example, a 2048x2048 array), requires a larger setting than that for a smaller array (for example, a 512x512 array).

To correct the problem:

1. Click on OK.
2. Reboot WinView.
3. Note the array size (on the Setup|Hardware|Controller/CCD tab page or the Acquisition|Experiment Setup|Main tab page Full Chip dimensions). If your camera contains a large array (such as a 2048x2048 array), and the DMA buffer size is too small, there will not be enough space in memory for the data set.
4. Open Setup|Environment|Environment dialog box.
5. Increase the DMA buffer size to a minimum of 32 Mb (64 Mb if it is currently 32 Mb or 128 Mb if it is currently 64 Mb), click on OK, and close WinView.
6. Reboot your computer.
7. Restart WinViewc and begin acquiring data or focusing. If you see the message again, increase the DMA buffer size.
Serial violations have occurred. Check interface cable.

This error message dialog will appear if you try to acquire an image or focus the camera and either (or both) of the following conditions exists:

- The camera system is not turned ON.
- There is no communication between the camera and the host computer.

To correct the problem:

1. Turn OFF the camera system (if it is not already OFF).
2. Make sure the Detector-Controller cable is secured at both ends and that the computer interface cable is secured at both ends.
3. After making sure that the cables are connected, turn the camera system power ON.
4. Click OK on the error message dialog and retry acquiring an image or running in focus mode.

Note: This error message will also be displayed if you turn the camera system OFF or a cable comes loose while the application software is running in Focus mode.
Appendix G

Glossary

A/D converter: Analog-to-digital converter. In a CCD camera system, the electronic circuitry that converts the analog information (continuous amplitudes) acquired by the camera into the digital data (quantified, discrete steps) used for image display.

ADU: Analog-to-digital unit. A number representing a CCD's output. The relationship between the ADUs generated and the number of electrons acquired on the CCD is defined by the system gain. Intensities given in ADUs provide a convenient method for comparing images and data generated by different cameras. Also referred to as count and digital number.

Anti-blooming: Blooming is caused by saturation of one or more CCD pixels. This can occur if the incoming light is too bright or when extensive serial and parallel binning is being performed. When this saturation happens, the excess charge overflows into the adjacent pixels and results in a streak or a blob appearing on the image. Anti-blooming is traditionally controlled by specific CCD architecture designs that drain the excess charge.

Avalanche Gain: Also called "on-chip multiplication gain". A technology that enables multiplication of charge (i.e., electrons) collected in each pixel of the CCD’s active array. Secondary electrons are generated via an impact-ionization process that is initiated and sustained when higher-than-typical voltages are applied to an “extended” portion of the CCD’s serial register. Multiplying the signal above the read noise of the output amplifier enables ultra-low-light detection at high operation speeds. (Some CCD cameras with on-chip multiplication gain utilize two output amplifiers, an “on-chip multiplication gain” amplifier that allows the camera to be used for low-light, high-speed applications and a “traditional” amplifier for wide-dynamic-range applications.)

Bias: In a CCD camera system, the minimum intensity required for each exposure (equivalent to performing a zero-second exposure with the shutter closed). Without adding any light, the bias allows charge to be read out on the CCD while raising the intensity level high enough to ensure that the camera does not deliver a negative number to the A/D converter. (The A/D converter only works in the set of positive numbers and has no instructions for processing negative numbers.) The bias may be user settable. However, it is set at the factory and should remain stable over the lifetime of the camera system.

Binning: Hardware binning is the process of combining the charge from adjacent pixels in a CCD before the signal is read out by the preamplifier. A binning of 1 in both directions reads out each pixel at full X-axis resolution. A binning of 2 in both directions combines four pixels, cutting the X-axis resolution in half, but quadrupling the light-collecting area. If the CCD chip shift register is being saturated due to hardware binning, you can use software binning instead by checking Use Software Binning on the ROI Setup tab page. Note that software binning is not as fast as hardware binning.
Cancel button: Exits a dialog box without performing any processing. Any changes to the dialog are lost.

Close button: Closes the dialog box or window with no action taken.

Dark current: (1) The charge accumulated within a well, in the absence of light. (2) The background current that flows in a charge-coupled device or image intensifier of a camera system. Cooling the photodetector's primary imaging surface (i.e., the CCD's photoconductor or the image intensifier's photocathode) can reduce or eliminate dark current. Also called *thermally generated charge*. Dark current can be subtracted from an image.

Gating: In an intensified camera system, the application of a voltage that switches the image intensifier on and off in very short intervals. Gating improves temporal resolution. Gating can be controlled by the programmed exposure time (Shutter Mode) or is determined by the Pulser settings (Gate Mode).

Help button: Opens the context-sensitive help for the active tab page or dialog box.

Host computer: The primary or controlling computer for a camera.

Mouse button: Allows you to specify a region to be processed using the mouse. Simply drag a box in the data region of the active window and then click on Mouse. The Frame and Range parameters will assume the values of the defined region. Note that the Mouse button is only active when the Input tab page is selected.

MPP: Multi-pinned-phase operation. A mode that reduces the rate of dark current generation by a factor of 20 or more, relaxing CCD cooling requirements to the level where a thermoelectric cooler is sufficient for most applications. Also called *inverted operation*.

NVRAM: Non-Volatile Random Access Memory. NVRAM contains factory-programmed information about the controller and, in many cases, the camera/detector.

Process button: Causes the specified operation or process to be performed. The process is performed on the data specified on the Input tab page and saved using the file name and data type specified on the Output tab page.

PVCAM®: Programmable Virtual Camera Access Method. An exclusive (Roper Scientific) universal programming interface. A set of software library routines that implements a detector or camera's operations in a hardware-independent, platform-independent (or "virtual") suite of function calls. Once an application has been written to control one PVCAM-enabled camera, all PVCAM-enabled cameras are then compatible with that application.

ROI: Region of interest. A user-defined, rectangular area (a square is common) on a CCD that is exposed and processed as an image.

Shutter Compensation Time: The time it takes for a mechanical shutter to open or close. This time needs to be accounted for during hardware setup so the software can allow enough time for the shutter to open before starting data acquisition and allow enough time for it to close before reading out the array.
Limited Warranty

Princeton Instruments, a division of Roper Scientific, Inc. ("Princeton Instruments", "us", "we", "our") makes the following limited warranties. These limited warranties extend to the original purchaser ("You", "you") only and no other purchaser or transferee. We have complete control over all warranties and may alter or terminate any or all warranties at any time we deem necessary.

Basic Limited One (1) Year Warranty

Princeton Instruments warrants this product against substantial defects in materials and / or workmanship for a period of up to one (1) year after shipment. During this period, Princeton Instruments will repair the product or, at its sole option, repair or replace any defective part without charge to you. You must deliver the entire product to the Princeton Instruments factory or, at our option, to a factory-authorized service center. You are responsible for the shipping costs to return the product. International customers should contact their local Princeton Instruments authorized representative/distributor for repair information and assistance, or visit our technical support page at www.piacton.com.

Limited One (1) Year Warranty on Refurbished or Discontinued Products

Princeton Instruments warrants this product against defects in materials or workmanship for a period of up to one (1) year after shipment. During this period, Princeton Instruments will repair or replace, at its sole option, any defective parts, without charge to you. You must deliver the entire product to the Princeton Instruments factory or, at our option, a factory-authorized service center. You are responsible for the shipping costs to return the product to Princeton Instruments. International customers should contact their local Princeton Instruments representative/distributor for repair information and assistance or visit our technical support page at www.piacton.com.

Normal Wear Item Disclaimer

Princeton Instruments does not warrant certain items against defect due to normal wear and tear. These items include internal and external shutters, cables, and connectors. *These items carry no warranty, expressed or implied.*

XP Vacuum Chamber Limited Lifetime Warranty

Princeton Instruments warrants that the cooling performance of the system will meet our specifications over the lifetime of an XP detector or Princeton Instruments will, at its sole option, repair or replace any vacuum chamber components necessary to restore the cooling performance back to the original specifications at no cost to the original purchaser. *Any failure to "cool to spec" beyond our Basic (1) year limited warranty from date of shipment, due to a non-vacuum-related component failure (e.g., any components that are electrical/electronic) is NOT covered and carries NO WARRANTIES EXPRESSED OR IMPLIED.* Responsibility for shipping charges is as described above under our Basic Limited One (1) Year Warranty.
Sealed Chamber Integrity Limited 24 Month Warranty
Princeton Instruments warrants the sealed chamber integrity of all our products for a period of twenty-four (24) months after shipment. If, at anytime within twenty-four (24) months from the date of delivery, the detector should experience a sealed chamber failure, all parts and labor needed to restore the chamber seal will be covered by us. Open chamber products carry NO WARRANTY TO THE CCD IMAGING DEVICE, EXPRESSED OR IMPLIED. Responsibility for shipping charges is as described above under our Basic Limited One (1) Year Warranty.

Vacuum Integrity Limited 24 Month Warranty
Princeton Instruments warrants the vacuum integrity of all our products for a period of up to twenty-four (24) months from the date of shipment. We warrant that the detector head will maintain the factory-set operating temperature without the requirement for customer pumping. Should the detector experience a Vacuum Integrity failure at anytime within twenty-four (24) months from the date of delivery all parts and labor needed to restore the vacuum integrity will be covered by us. Responsibility for shipping charges is as described above under our Basic Limited One (1) Year Warranty.

Image Intensifier Detector Limited One Year Warranty
All image intensifier products are inherently susceptible to Phosphor and/or Photocathode burn (physical damage) when exposed to high intensity light. Princeton Instruments warrants, with the exception of image intensifier products that are found to have Phosphor and/or Photocathode burn damage (which carry NO WARRANTIES EXPRESSED OR IMPLIED), all image intensifier products for a period of one (1) year after shipment. See additional Limited One (1) year Warranty terms and conditions above, which apply to this warranty. Responsibility for shipping charges is as described above under our Basic Limited One (1) Year Warranty.

X-Ray Detector Limited One Year Warranty
Princeton Instruments warrants, with the exception of CCD imaging device and fiber optic assembly damage due to X-rays (which carry NO WARRANTIES EXPRESSED OR IMPLIED), all X-ray products for one (1) year after shipment. See additional Basic Limited One (1) year Warranty terms and conditions above, which apply to this warranty. Responsibility for shipping charges is as described above under our Basic Limited One (1) Year Warranty.

Software Limited Warranty
Princeton Instruments warrants all of our manufactured software discs to be free from substantial defects in materials and / or workmanship under normal use for a period of one (1) year from shipment. Princeton Instruments does not warrant that the function of the software will meet your requirements or that operation will be uninterrupted or error free. You assume responsibility for selecting the software to achieve your intended results and for the use and results obtained from the software. In addition, during the one (1) year limited warranty. The original purchaser is entitled to receive free version upgrades. Version upgrades supplied free of charge will be in the form of a download from the Internet. Those customers who do not have access to the Internet may obtain the version upgrades on a CD-ROM from our factory for an incidental shipping and handling charge. See Item 12 in the following section of this warranty ("Your Responsibility") for more information.
Owner’s Manual and Troubleshooting

You should read the owner’s manual thoroughly before operating this product. In the unlikely event that you should encounter difficulty operating this product, the owner’s manual should be consulted before contacting the Princeton Instruments technical support staff or authorized service representative for assistance. If you have consulted the owner's manual and the problem still persists, please contact the Princeton Instruments technical support staff or our authorized service representative. See Item 12 in the following section of this warranty ("Your Responsibility") for more information.

Your Responsibility

The above Limited Warranties are subject to the following terms and conditions:

1. You must retain your bill of sale (invoice) and present it upon request for service and repairs or provide other proof of purchase satisfactory to Princeton Instruments.

2. You must notify the Princeton Instruments factory service center within (30) days after you have taken delivery of a product or part that you believe to be defective. With the exception of customers who claim a "technical issue" with the operation of the product or part, all invoices must be paid in full in accordance with the terms of sale. Failure to pay invoices when due may result in the interruption and/or cancellation of your one (1) year limited warranty and/or any other warranty, expressed or implied.

3. All warranty service must be made by the Princeton Instruments factory or, at our option, an authorized service center.

4. Before products or parts can be returned for service you must contact the Princeton Instruments factory and receive a return authorization number (RMA). Products or parts returned for service without a return authorization evidenced by an RMA will be sent back freight collect.

5. These warranties are effective only if purchased from the Princeton Instruments factory or one of our authorized manufacturer's representatives or distributors.

6. Unless specified in the original purchase agreement, Princeton Instruments is not responsible for installation, setup, or disassembly at the customer’s location.

7. Warranties extend only to defects in materials or workmanship as limited above and do not extend to any product or part which has:
 - been lost or discarded by you;
 - been damaged as a result of misuse, improper installation, faulty or inadequate maintenance or failure to follow instructions furnished by us;
 - had serial numbers removed, altered, defaced, or rendered illegible;
 - been subjected to improper or unauthorized repair; or
 - been damaged due to fire, flood, radiation, or other "acts of God" or other contingencies beyond the control of Princeton Instruments.

8. After the warranty period has expired, you may contact the Princeton Instruments factory or a Princeton Instruments-authorized representative for repair information and/or extended warranty plans.

9. Physically damaged units or units that have been modified are not acceptable for repair in or out of warranty and will be returned as received.
10. All warranties implied by state law or non-U.S. laws, including the implied warranties of merchantability and fitness for a particular purpose, are expressly limited to the duration of the limited warranties set forth above. With the exception of any warranties implied by state law or non-U.S. laws, as hereby limited, the forgoing warranty is exclusive and in lieu of all other warranties, guarantees, agreements, and similar obligations of manufacturer or seller with respect to the repair or replacement of any parts. In no event shall Princeton Instruments' liability exceed the cost of the repair or replacement of the defective product or part.

11. This limited warranty gives you specific legal rights and you may also have other rights that may vary from state to state and from country to country. Some states and countries do not allow limitations on how long an implied warranty lasts, when an action may be brought, or the exclusion or limitation of incidental or consequential damages, so the above provisions may not apply to you.

12. When contacting us for technical support or service assistance, please refer to the Princeton Instruments factory of purchase, contact your authorized Princeton Instruments representative or reseller, or visit our technical support page at www.piacton.com.

Contact Information

Roper Scientific's manufacturing facility for this product is located at the following address:

Princeton Instruments
3660 Quakerbridge Road
Trenton, NJ 08619 (USA)

Tel: 800-874-9789 / 609-587-9797
Fax: 609-587-1970

Customer Support E-mail: techsupport@piacton.com

For immediate support in your area, please call the following locations directly:

America
1.877.4.PIACTON (877.474.2286)

Benelux
+31 (347) 324989

France
+33 (1) 60.86.03.65

Germany
+49 (0) 89.660.7793

Japan
+81 (3) 5639.2741

UK & Ireland
+44 (0) 28.3831.0171

Otherwise, see our Support web page at www.piacton.com. An up-to-date list of addresses and telephone numbers is posted on the www.piacton.com/Support page. In addition, links on this page to support topics allow you to send e-mail based requests to the Customer Support group.
Data Type, Save As 60
Data Window Context menu 68
DELAYED TRIGGER OUT 132
Deleting data files 62
Demo interface 42
DG535
active mode 140
bracket pulsing 140
continuous exponential mode 141
continuous linear mode 141
Gating tab page 140
Interactive Trigger Setup 145
operation of 138
port address 139
Pulse Sequence Setup
Exponential Increment 142
Fast Amplitude parameter 143
Fast decay and Slow decay 142
sequential exponential algorithm 142
Slow
Amplitude parameter 143
Time Constant parameter 143
Time Constant 143
repetitive gating setup 140
sequential gating setup 141
slope, threshold & impedance 139
trigger mode 139
Display color control 83
Display tab page 41
Flip .. 41
Reverse 41
Rotate 41
Displaying data as 3D graph 72
Division math operation 105
Documentation, additional 16

E-H
EBI .. 100
Edge Enhancement 121
procedure 111
Edge Enhancement (post-processing)
Laplacian masks 111
parameters 110
Sobel edge detection 111
Exclusive OR math operation 106
Exponential Data type (DG535 Sequential) 142
Files of Type text box 58
Filter Matrix custom filter 116
FITS converter 152
Fixed Increment type (DG535 Sequential) 142
Flatfield corrections 101
acquiring a flatfield file 101
automatic 101
FT IMAGE SHIFT signal 40
Full lateral resolution 199
Gate Delay (DG535 Sequential) 141
Gate Width (DG535 Sequential) 141

D
Dark charge 100
Data collection (Initial) 47
Experiment Setup procedure
steps common to all controller types 49
PentaMAX 55
procedure for all controllers 56
Skips and Cleans 49
ST-133 53
temperature control 48
Data correction techniques 99
Data displayed as 3D graph 72
Data displayed as graph
5%-95% display range 75
brightness/contrast control 66
cursor 77
Cursor Curve 79
cursor functions 77
displaying one strip 77
hidden surfaces 80
Information box 76
Marker Curve 79
multiple strips 78
ROI ... 75
strip selection 78
Undo All Zoom In 76
Zoom In 75
Data displayed as image
autoring ROI 82
axes and cross sections 81
axes labeling 83
brightness 66
color of axes and labels 83
context window 68
cursor functions 77
Display Layout dialog box 81
Display Layout Range tab page 84
information box 82
ROI .. 67
Data file compatibility 57
Data File tab page 61
Data files
closing 61
deleting 62
iconizing 61
opening 57
reducing to icon 61
saving 60
Data files (temporary), saving 60
Data start 178
Data structure
Ver 1.43 169
Ver 1.6 and 32-bit versions 170
Ver 2.5 173
Index

GPIB default address setting ... 138
Graphics card ... 18
Graphs, labeling .. 68
Grouping ... 94
Hard disk ... 17
Hardware setup
 Camera Detection wizard .. 29
 Custom Chip ... 151
 Custom Timing .. 152
 Display tab page .. 41
 Hardware Setup wizard ... 33
 Interface tab page .. 42
 overview ... 27
 requirements .. 17
 HID-lamp spe ... 73
 High speed PCI interface ... 42
Histograms
 cumulative ... 126
 post-processing .. 126
 procedure ... 126
 standard ... 126

I-K
I/O address .. 42
I/O Address 2 & 3 .. 42
IEEE-488 GPIB port ... 138
Image Math ... 103
Image, Graph and 3D Graph selection 64
Images, labeling .. 68
Imaging data collection (Initial)
 ST-133 ... 53
 focusing ... 53
Information box as active window 76
Installation
 aborting ... 21
 from FTP site ... 21
 multiple versions of WinView/32 181
 PCI card driver ... 22
 USB 2.0 driver ... 23
Installing WinView/32 ... 17
Intensifier gain, effect on dark charge 100
Interface tab page ... 42
 interrupt level ... 42
 Type ... 42
 Demo ... 42
 high-speed PCI ... 42
 PCI Timer .. 42
Interrupt level ... 42
Interrupt tab page
 I/O address .. 42
 I/O address 2 and 3 ... 42
Introduction to manual .. 13
ISA interface card
 driver installation .. 188
Kinetics ... 39, 90

L-M
Labeling graphs and images ... 68
Linear math operations .. 105
Log10 math operation .. 105
Logic 0 PentaMAX output ... 40
Logic 1 PentaMAX output ... 40
Look Up Table (post-processing)
 formats .. 118
 procedure ... 117
LUT .. 118
See Look Up Table
Macro Record .. 153
Main menu ... 26
Math
 A, B and C tab pages .. 103
 data types
 byte.. 104
 float .. 104
 int 104 ... 104
 long ... 104
 uint ... 104
 file tab pages ... 103
 operations
 single file .. 104
 single file and constant ... 104
Parameters
 data type .. 104
 display result ... 104
 Frame ... 103
 Input (Output) file name ... 103
 X and Y Range ... 103
 procedure ... 107
MAX math operation ... 105
Memory requirements .. 17
MIN math operation ... 105
Morphological requirements .. 114
Morphological (post-processing)
 procedure ... 115
Mouse cursor .. 26
Mouse requirement ... 18
Multiplication math operation .. 105

N-O
Natural Log math operation .. 105
Non-Linear math operations ... 105
NOT math operation ... 106
NOT READY signal .. 40
NOTSCAN signal ... 40
NT log-on requirements .. 20
Number of Images .. 141
Online Help, overview ... 15
Opening data files .. 57
 multiple files .. 59
Operations
 Absolute ... 105
 Addition ... 105
 AND ... 106
 Complement .. 106
This page intentionally left blank.