Thermal infrared emission spectroscopy of the pyroxene mineral series

Victoria E. Hamilton
Department of Geology, Arizona State University, Tempe

Abstract. The thermal infrared emissivity spectra of coarse particulate samples of compositions in the pyroxene series display reststrahlen features (absorptions) that distinguish not only orthorhombic from monoclinic structures, but also major end-members within the two structural groups, as well as minerals within solid solution series. The exact number of reststrahlen features observed and their positions are dependent on mineral structure and cation occupancy of the M1 and M2 sites. End-member quadrilateral pyroxenes (Mg$_2$Si$_2$O$_6$-Fe$_2$Si$_2$O$_6$-Ca[Mg, Fe]Si$_2$O$_6$) are easily distinguished from each other and from minerals in the nonquadrilateral series (NaFeSi$_2$O$_6$-Na[Al, Fe]Si$_2$O$_6$-LiAlSi$_2$O$_6$). Furthermore, among quadrilateral pyroxenes, variations in Mg/(Mg + Fe) are linearly correlated with several band locations, as are variations in Ca content in high-Ca clinopyroxenes. In both quadrilateral and nonquadrilateral compositions, Christiansen feature positions are also diagnostic. No correlations with minor constituents (of the order of 0.05 atoms per formula unit) were observed. The detailed spectral characteristics of pyroxenes and their variability as a function of structure and cation occupancy are presented here with determinative curves for the identification of pyroxene composition. These data have important implications for the interpretation of spectral data from both laboratory and remote sensing instruments because they should permit a more detailed determination of pyroxene composition in measured unknown pure mineral and bulk compositions dominated by surface scattering, i.e., all particulates greater than ~65 μm, and solid samples.

1. Introduction

Pyroxenes are important rock-forming minerals that have a wide range of compositions and are found primarily in rocks derived from igneous and metamorphic processes. Due to their geological importance, pyroxenes have been the subject of numerous spectroscopic studies in the visible (V), near infrared (NIR), and thermal infrared (TIR) regions of the electromagnetic spectrum. Electronic spectroscopy (VNIR) examines electron transitions and crystal field effects in minerals, and numerous electronic spectroscopy studies have produced a large quantity of literature describing the major and trace element systematics of pyroxene minerals [e.g., Adams, 1974; Bancroft and Burns, 1967; Evans et al., 1967; Goldman and Rossman, 1979; Rossman, 1974; Virgo and Hafner, 1970]. Cloutis and Gaffey [1991] provide an excellent review of these studies and the relationships between spectral features and compositional variations observable in the ~0.3 to ~2.6 μm region of the electromagnetic spectrum.

Fundamental vibrations of atoms in the crystal lattices of most minerals absorb incident electromagnetic energy at frequencies which coincide with the middle, or TIR portion of the electromagnetic spectrum (greater than ~5 μm); in some minerals, diagnostic absorptions due to vibrational overtones and combinations can be present at shorter wavelengths, but the absorption coefficients of such bands are weaker than those resulting from the fundamental vibrations. In the laboratory work described here, absorption features with wavenumbers between ~2000 and 400 cm$^{-1}$ (corresponding to wavelengths of 5–25 μm) are studied. Within this wavelength range, virtually all minerals have a unique set of spectral absorption features that allow them to be distinguished from each other. Thus the TIR region of the spectrum is excellent for examining pure samples as well as mineralogically complex geologic materials (i.e., rocks) and is gaining popularity as a remote sensing wavelength range for geologic applications [e.g., Palluconi and Meeks, 1985; Christensen et al., 1992].

Previous TIR spectral studies of pyroxene minerals commonly focused on either calculations of the vibrational frequencies of pyroxenes [Saksena, 1961; Gaskell, 1967; Lazarev, 1972], comparisons between chain silicates with differing numbers of anions in the repeat units [Lazarev and Tenisheva, 1961a, b; Ryall and Threadgold, 1966], investigations of a single pyroxene [Omori, 1971], comparisons of pyroxene minerals to other silicates [Launer, 1952], or on the spectral variability between members of one of the several pyroxene solid solution series (e.g., clinopyroxenes) [Rutstein and White, 1971; Estep, 1972; Estep et al., 1971, 1972]. Most previous studies have used transmission or Raman techniques, both of which produce different spectral features than the emission technique; emission or reflectance measurements were not necessary, as the results of these investigations were not intended to be applied to remote sensing data. To our knowledge, there are no studies of pyroxenes in the TIR, using either an emission or hemispherical reflectance technique, that attempt to describe the systematics of varied pyroxene spectra as a function of composition and structure. Emission (or hemispherical reflectance) data of minerals and rocks are valuable to geologists for several reasons, including (1) the time required for analysis of...
unknown mineral and rock (e.g., field) samples can be significantly reduced because sample preparation is not required, and (2) laboratory emission (hemispherical reflectance) data provide convenient libraries for direct comparison to data acquired by field spectrometers and airborne or orbital remote sensing instruments.

The objective of this work is to provide a comprehensive analysis of the TIR spectral characteristics of major end-members and common compositions in the pyroxene mineral series as a function of structure and composition. We first review pyroxene crystal chemistry and the theory of vibrational spectroscopy as well as its prior application to pyroxene mineralogical analysis. We then list the pyroxene samples used in this study and their compositions as determined by electron microprobe analyses. In the Results section, we discuss our spectral analysis of quadrilateral and non-quadrilateral (Na- and Li-bearing) pyroxene compositions as a function of crystal structure and chemistry. Finally, we summarize the applicability of these results to the identification of unknown samples and examine the effect of reduced spectral resolution, which has implications for the accuracy of identifications in many remote sensing datasets.

2. Background

2.1. Pyroxenes

Pyroxenes are silicate minerals with a general formula of \(XYZ_2O_6 \), where \(X \) represents \(Na^+ \), \(Ca^{2+} \), \(Mn^{2+} \), \(Fe^{2+} \), Fe\(^{3+} \), Mg\(^{2+} \), and Li\(^+ \) in the M2 site; \(Y \) represents Mn\(^{2+} \), Fe\(^{3+} \), Mg\(^{2+} \), Fe\(^{3+} \), Al\(^{3+} \), Cr\(^{3+} \), and Ti\(^{4+} \) in the M1 site; and \(Z \) represents Si\(^{4+} \) and sometimes Al\(^{3+} \) [Cameron and Papike, 1981]. The most common pyroxenes are part of the chemical group known as quadrilateral pyroxenes [Papike et al., 1974] with the monoclinic (clinopyroxene) end-members diopside, CaMgSi\(_2\)O\(_6\), and hedenbergite, CaFe\(^{2+}\)Si\(_2\)O\(_6\), and the orthorhombic (orthopyroxene) end-members enstatite, Mg\(_2\)Si\(_2\)O\(_6\), and ferrofusilite, Fe\(^{2+}\)Si\(_2\)O\(_6\). Compositions containing 5–15 mol % Ca are referred to as pigeonite. Pigeonites are monoclinic but belong to a different space group than the high-Ca clinopyroxenes. Non-quadrilateral pyroxene compositions contain formula cations other than those of the end-member quadrilateral compositions, such as Fe\(^{3+} \), Mn\(^{2+} \), Na\(^+ \), and Li\(^+ \). Mineral compositions in this category include johannsenite, Ca(Mn, Fe)Si\(_2\)O\(_6\), omphacite, (Ca, Na)(Mg, Fe\(^{2+} \), Fe\(^{3+} \), Al)Si\(_2\)O\(_6\), acmite, NaFe\(^{3+}\)Si\(_2\)O\(_6\), jadeite, NaAlSi\(_2\)O\(_6\), and spodumene, LiAlSi\(_2\)O\(_6\). In this study, we will examine minerals in both chemical groups with an emphasis on quadrilateral compositions.

The ideal pyroxene structure is based on two tetrahedral chains and one octahedral strip that form an “I-beam” unit [Klein and Hurlbut, 1993]. The tetrahedral chains consist of silicon-oxygen (Si-O, or generically “T-O”) tetrahedra linked at two corners to form an infinite chain (SiO\(_3\))^\(^2\)- along the c axis of the crystal with two tetrahedra in the repeat unit. The tetrahedra are arranged such that their bases are approximately parallel to the (100) plane. Octahedral layers contain 6- or 8-coordinated metal cations; the M1 site is in 6-fold coordination with the oxygens, and the coordination of the M2 site (6-, 7-, or 8-fold) is determined by the size of the cation. In the I-beam the two tetrahedral layers point toward each other and are cross linked by cations in the octahedral layers. The M1 cations lie between the apices of the SiO\(_3\) chains, and the M2 atoms lie between the bases of the I-beams (Figure 1). The stacking arrangement of the tetrahedral and octahedral layers determines the symmetries of the various structures. The remainder of this section is a summary of the crystal chemistry of pyroxenes as discussed in detail by Cameron and Papike [1981].

Pyroxene structures are either monoclinic (clinopyroxene) or orthorhombic (orthopyroxene). Natural compositions containing only Mg and/or Fe\(^{2+} \) in the M1 and M2 sites belong to the predominant orthorhombic space group, \(Pbcn \). The high-Ca monoclinic pyroxenes belong to space group \(C2/c \), and pigeonites belong to space group \(P2_1/c \). Although the ideal pyroxene tetrahedral chain has 180° bond angles between adjacent tetrahedra, real minerals rarely exhibit such perfection, instead having distorted and/or rotated tetrahedra. Rotations may tend toward cubic close-packing and/or hexagonal close-packing within a space group. Within the \(Pbcn \) structural type, the two chains of an I-beam are kinked by slightly different amounts and are not symmetrically equivalent (one chain, A, is more extended and has smaller tetrahedra than the other, B, which is more kinked). These distortions and rotations of the tetrahedra are due to several effects, including shared polyhedral edges, the size and charge of the octahedral cations, and the coordination and local electrostatic environment of the oxygen atoms. However, both chains exhibit rotations that lead to cubic close-packing. The \(C2/c \) pyroxenes have chains that are symmetrically equivalent and also tend toward cubic close-packing rotations. Pigeonite (space group \(P2_1/c \)) has asymmetric chains, one of which exhibits cubic close-packing rotations, and another that exhibits hexagonal close-packing rotations. The octahedral layers of each space group are also “skewed” or “tilted.” \(Pbcn \) pyroxenes exhibit alternating directions of skew, while octahedral strips in \(C2/c \) and \(P2_1/c \) pyroxenes exhibit only one direction of skew. Lastly, the structural configuration of the M2 site is variable, resulting in either shared tetrahedral/ octahedral edges or no shared edges. When there are no shared edges, the M2 site is largest and is most stable. If there are shared edges, the M2 polyhedron is smallest. \(Pbcn \) and

![Figure 1. Diagram of the pyroxene I-beam structure. View is down c axis. Small atoms represent M1 site, and large atoms represent M2 site.](image-url)
Pyroxene samples used in this study have been crushed, sieved, and handpicked to include only (visibly) pure grains ranging in size from 710 to 1000 μm (1 mm). This particle size range was chosen to match the particle size used in the Arizona State University (ASU) spectral library [Christensen et al., this issue (b)] and to avoid spectral effects due to volume scattering that may occur in spectra of very fine particulate samples (greater than ~65 μm). The results in this study are applicable to samples dominated by surface scattering, with particle sizes greater than at least 65 μm, including solid samples (the spectra of particulate samples vary from solid samples only in spectral contrast, with no variation in band location or shape). All samples except two are natural samples; the author generated the synthetic diopside sample (VEH-DIO01) at ASU, and the pigeonite sample (Wo15En36Fs54 33,34) was synthesized by D. Lindsay at the State University of New York, Stony Brook. Numerous samples were graciously loaned by the National Museum of Natural History at the Smithsonian Institution (sample numbers beginning NMNH), while others were loaned by the Los Angeles County Natural History Museum (LACMNH), the U.S. Geological Society (USGS) Spectroscopy Lab, Denver (HS, Hunt and Salisbury Collection), or purchased from Ward's Natural Science (WAR), David Shannon Minerals (DSM), and Burminco (BUR). Many of these samples are included in the ASU Thermal Emission Spectroscopy Laboratory's mineral library [Christensen et al., this issue, (b)]. Sample purity was verified through one or more of the following techniques: electron microprobe, X-ray diffraction, and bulk chemical analysis. All samples and their chemistries are listed in Table 1, with a quality rating from 1 to 4. A quality rating of 1 indicates a pure sample, without any evolved phases or significant substitutions. A rating of 2 indicates minor compositional impurities (including observed exsolution) having no significant observable effect on the mineral spectrum, and a designation of 3 is given when the sample is too impure to include in the data analysis. A rating of 4 is given to samples that do not have compositional data but appear physically and spectrally to be high-quality samples. The composition of quadrilateral pyroxenes are plotted on the pyroxene ternary in Figure 2, and representative spectra of both quadrilateral and nonquadrilateral compositions are shown in Figure 3. Table 2 contains the weight percent (wt %) oxide data for each sample. Although iron content is usually reported as wt % FeO, electron microprobe analyses cannot distinguish between Fe²⁺ and Fe³⁺. In converting each mineral’s analysis from wt % oxides to mole percent (mol %) a test was performed to determine whether or not any or all of the measured FeO should be reallocated to Fe₂O₃ prior to the conversion [Droop, 1987]. For samples in which the occurrence of Fe³⁺ is unlikely, any indication of reassignment is assumed to be in error, whereas for samples with increased abundances of elements that make paired substitutions, the reassignment is judged to have a greater likelihood of reflecting the true valence states of Fe in the mineral. This study does not attempt to discriminate between variabilities in spectral character due to Fe valency, merely those related to overall abundance; in the future, we will examine the pyroxene spectra for these effects after obtaining visible/near infrared and Mössbauer spectroscopic analyses for Fe valency determination.

At the time of this writing, no enstatite samples with >Mg₉₄ or <Mg₅₅ were available; as the ASU collection expands and additional high- and low-Fe samples are obtained, their characteristics will be added to the data here, and the trends reevaluated. Some compositions, such as those with <Mg₅₀ are uncommon, and others (<Mg₉₀) are rare in nature and likely will be difficult to obtain. Unfortunately, due to the extreme difficulty encountered in obtaining a pure, uninveted sample of pigeonite, only a single, synthetic sample is included in this study, and thus the variability of this mineral’s spectral characteristics cannot be addressed by this study. Because the discussion of pigeonite is limited, references to “clinopyroxene” should be taken as equivalent to “high-calcium” pyroxene, unless otherwise stated.

4. Thermal Infrared Spectral Data Acquisition

The spectrometer used in this study is a Mattson Cygnus 100 Fourier transform infrared (FTIR) interferometric spectrometer that has been modified to measure emitted sample radiation. A detailed description of the emission technique and the ASU spectrometer is provided by Ruff et al. [1997]. The sample chamber is located within a glove box that is external to the spectrometer; both the glove box and the spectrometer are constantly purged to remove as much atmospheric H₂O and CO₂ as possible. Particulate samples are poured into copper sample cups, which are painted IR black and have a 3-cm internal diameter. The spot size observed is ~1 cm, with the goal of obtaining a spectrum that is representative of many randomly oriented grains. Consistency of spectral features between samples and over multiple analyses indicates that this goal is achieved. Prior to analysis, particulate pyroxene samples were heated to 80°C to improve signal to noise during data acquisition. This temperature was maintained throughout data acquisition by the use of a controlled heater element underneath the sample cup. Spectral data were collected over the wavelength range of 2000–4000 cm⁻¹ (5–25 μm) at a spectral sampling of 2 cm⁻¹; however, data in the 2000–1400 cm⁻¹ region typically are not shown because there are few well-resolved silicate absorption features and residual water vapor
<table>
<thead>
<tr>
<th>Sample</th>
<th>Mineral</th>
<th>Chemical Formula*</th>
<th>Quality</th>
<th>Locality</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUR-1820</td>
<td>clinopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Si.2O.6)</td>
<td>1</td>
<td>Otter Lake, Ontario, Canada</td>
<td></td>
</tr>
<tr>
<td>BUR-1920</td>
<td>orthopyroxene</td>
<td>(Ca.04Mg.86Fe.06Al.01Si.2O.6)</td>
<td>1</td>
<td>Stillwater Complex, Montana</td>
<td></td>
</tr>
<tr>
<td>BUR-2485</td>
<td>clinopyroxene</td>
<td>(Ca.90Mg.06Fe.04Al.01Si.2O.6)</td>
<td>1</td>
<td>Granite Co., Arizona</td>
<td></td>
</tr>
<tr>
<td>BUR-620</td>
<td>clinopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Al.02Si.2O.6)</td>
<td>1</td>
<td>Verona, Ontario, Canada</td>
<td></td>
</tr>
<tr>
<td>DSM-AUG01</td>
<td>clinopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Ti.03Al.01Si.2O.6)</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>DSM-DIO01</td>
<td>clinopyroxene</td>
<td>(Ca.90Mg.06Fe.04Al.01Si.2O.6)</td>
<td>1</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>DSM-ESN01</td>
<td>orthopyroxene</td>
<td>(Ca.90Mg.06Fe.04Al.01Si.2O.6)</td>
<td>1</td>
<td>Preg Quarry, Kraubath, Styria, Austria</td>
<td></td>
</tr>
<tr>
<td>DSM-HED01</td>
<td>clinopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Si.2O.6)</td>
<td>1</td>
<td>Iron Cap Prospect, Graham Co., Arizona</td>
<td></td>
</tr>
<tr>
<td>HS-10.4B</td>
<td>clinopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Al.02Si.2O.6)</td>
<td>2</td>
<td>Silver Star, Montana</td>
<td></td>
</tr>
<tr>
<td>HS-11.9B</td>
<td>clinopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Al.02Si.2O.6)</td>
<td>1</td>
<td>Oaxaca, Mexico</td>
<td></td>
</tr>
<tr>
<td>HS-15.4B</td>
<td>clinopyroxene</td>
<td>(Ca.90Mg.06Fe.04Al.01Si.2O.6)</td>
<td>1</td>
<td>Edwards, New York</td>
<td></td>
</tr>
<tr>
<td>HS-199.4B</td>
<td>pigeonite</td>
<td>n/a</td>
<td>3</td>
<td>Essex County, New York</td>
<td></td>
</tr>
<tr>
<td>HS-205.4B</td>
<td>clinopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Al.02Si.2O.6)</td>
<td>1</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>HS-210.4B</td>
<td>clinopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Si.2O.6)</td>
<td>1</td>
<td>Afghanistan</td>
<td></td>
</tr>
<tr>
<td>HS-317.4B</td>
<td>clinopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Si.2O.6)</td>
<td>2</td>
<td>Finland</td>
<td></td>
</tr>
<tr>
<td>HS-9.4B</td>
<td>orthopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Si.2O.6)</td>
<td>1</td>
<td>Jackson County, North Carolina</td>
<td></td>
</tr>
<tr>
<td>LMCLMN-6800</td>
<td>acmite</td>
<td>(Na.06Ca.02Mg.04Al.01Si.2O.6)</td>
<td>1</td>
<td>Arkansas</td>
<td></td>
</tr>
<tr>
<td>LMCLMN-SPD01</td>
<td>spodumene</td>
<td>n/a</td>
<td>4</td>
<td>Pala, California</td>
<td></td>
</tr>
<tr>
<td>NMNH-107497</td>
<td>clinopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Al.02Si.2O.6)</td>
<td>1</td>
<td>Sinkhole Crater, Bandana, North Carolina</td>
<td></td>
</tr>
<tr>
<td>NMNH-119197</td>
<td>clinopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Si.2O.6)</td>
<td>1</td>
<td>Eureka, Ducktown, Tennessee</td>
<td></td>
</tr>
<tr>
<td>NMNH-11973</td>
<td>orthopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Al.02Si.2O.6)</td>
<td>1</td>
<td>Mount Davies, S. Australia</td>
<td></td>
</tr>
<tr>
<td>NMNH-120414</td>
<td>orthopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Al.02Si.2O.6)</td>
<td>2</td>
<td>Roding River, Nekon, New Zealand</td>
<td></td>
</tr>
<tr>
<td>NMNH-122302</td>
<td>orthopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Al.02Si.2O.6)</td>
<td>1</td>
<td>Nasinu Village, Ovalau, Fiji</td>
<td></td>
</tr>
<tr>
<td>NMNH-12828</td>
<td>orthopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Al.02Si.2O.6)</td>
<td>2</td>
<td>Frank Smith Mine, Barkly West, S. Africa</td>
<td></td>
</tr>
<tr>
<td>NMNH-16168</td>
<td>orthopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Al.02Si.2O.6)</td>
<td>2</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>NMNH-166555</td>
<td>orthopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Al.02Si.2O.6)</td>
<td>2</td>
<td>Lac Onatchway, Quebec, Canada</td>
<td></td>
</tr>
<tr>
<td>NMNH-34669</td>
<td>orthopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Al.02Si.2O.6)</td>
<td>1</td>
<td>Kupperburg, Bayem, Germany</td>
<td></td>
</tr>
<tr>
<td>NMNH-38833</td>
<td>orthopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Al.02Si.2O.6)</td>
<td>1</td>
<td>Webster, North Carolina</td>
<td></td>
</tr>
<tr>
<td>NMNH-80819</td>
<td>clinopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Al.02Si.2O.6)</td>
<td>1</td>
<td>Schwarzenstein, Tyrol, Austria</td>
<td></td>
</tr>
<tr>
<td>NMNH-82436</td>
<td>orthopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Al.02Si.2O.6)</td>
<td>1</td>
<td>Webster, North Carolina</td>
<td></td>
</tr>
<tr>
<td>NMNH-93527</td>
<td>orthopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Al.02Si.2O.6)</td>
<td>1</td>
<td>Paul's Island, Labrador, Canada</td>
<td></td>
</tr>
<tr>
<td>NMNH-9780</td>
<td>orthopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Al.02Si.2O.6)</td>
<td>1</td>
<td>Berks Co., Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>NMNH-B18427</td>
<td>orthopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Al.02Si.2O.6)</td>
<td>2</td>
<td>Heinola, Finland</td>
<td></td>
</tr>
<tr>
<td>NMNH-C2368</td>
<td>orthopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Al.02Si.2O.6)</td>
<td>1</td>
<td>western Greenland</td>
<td></td>
</tr>
<tr>
<td>NMNH-R11524</td>
<td>clinopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Al.02Si.2O.6)</td>
<td>2</td>
<td>Baird, Shasta Co. California</td>
<td></td>
</tr>
<tr>
<td>NMNH-R14440</td>
<td>orthopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Si.2O.6)</td>
<td>1</td>
<td>Kraubath, Styria, Austria</td>
<td></td>
</tr>
<tr>
<td>NMNH-R1516</td>
<td>clinopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Al.02Si.2O.6)</td>
<td>1</td>
<td>Templeton, Quebe, Canada</td>
<td></td>
</tr>
<tr>
<td>NMNH-R17421</td>
<td>clinopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Al.02Si.2O.6)</td>
<td>1</td>
<td>Magog, Quebec, Canada</td>
<td></td>
</tr>
<tr>
<td>VEH-DIO01</td>
<td>clinopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Al.02Si.2O.6)</td>
<td>1</td>
<td>synthetic</td>
<td></td>
</tr>
<tr>
<td>WAR-2889</td>
<td>orthopyroxene</td>
<td>(Ca.90Mg.06Fe.04Al.01Si.2O.6)</td>
<td>2</td>
<td>Bramble, Norway</td>
<td></td>
</tr>
<tr>
<td>WAR-5780</td>
<td>orthopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Al.02Si.2O.6)</td>
<td>1</td>
<td>Jupur, India</td>
<td></td>
</tr>
<tr>
<td>WAR-5858</td>
<td>clinopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Al.02Si.2O.6)</td>
<td>1</td>
<td>Tillamook Co., Oregon</td>
<td></td>
</tr>
<tr>
<td>WAR-6454</td>
<td>clinopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Al.02Si.2O.6)</td>
<td>1</td>
<td>Bird Creek, Ontario, Canada</td>
<td></td>
</tr>
<tr>
<td>WAR-6474</td>
<td>clinopyroxene</td>
<td>(Ca.90Mg.06Fe.04Na.02Al.02Si.2O.6)</td>
<td>1</td>
<td>Harcourt, Ontario, Canada</td>
<td></td>
</tr>
<tr>
<td>WAR-7684</td>
<td>spodumene</td>
<td>n/a</td>
<td>1</td>
<td>Newry, Maine</td>
<td></td>
</tr>
<tr>
<td>WAR-9909</td>
<td>jadeite</td>
<td>(Na.06Ca.02Mg.04Al.01Si.2O.6)</td>
<td>3</td>
<td>Monterey, California</td>
<td></td>
</tr>
<tr>
<td>WAR-ACM01</td>
<td>jadeite</td>
<td>(Na.06Ca.02Mg.04Al.01Si.2O.6)</td>
<td>3</td>
<td>two phases</td>
<td></td>
</tr>
<tr>
<td>W0.09Fe0.54Si3.34</td>
<td>pigeonite</td>
<td>>90% pig w/minor quartz & olivine</td>
<td>1</td>
<td>synthetic</td>
<td></td>
</tr>
</tbody>
</table>

*Fe2+ and Fe3+ values are based on recalculations of wt % oxides (see Table 2).
features may be present. For each sample, 260 scans (collected over ~7 min) were averaged to produce a single spectrum. Raw radiance data were converted to emission spectra following the method of Christensen and Harrison [1993], as adapted by Ruff et al. [1997]. Sources of error in the acquisition of this data are described by Ruff et al. [1997]; the total instrument-derived emissivity error for any given spectrum in this study is ~2–5%, and reproducibility with this technique is better than 1%.

5. Results and Discussion

5.1. Quadrilateral Pyroxenes

Vibrational spectra of this suite of quadrilateral pyroxenes exhibit significant variations in emissivity due to both structural and compositional differences (Figure 3). In terms of structurally related differences, orthopyroxene spectra (enstatite in Figure 3) may be broadly described as having reststrahlen features in the 1200–800 cm
\(^{-1}\) region that have the overall appearance of a broad absorption with three separate minima (the central of these three minima has two or four additional superposed minima), and additional reststrahlen features in the 600–400 cm
\(^{-1}\) region, which have an overall V-shaped appearance. Quadrilateral clinopyroxenes (C\(2/c\)) may be broadly described as having two separate absorptions between 1200 and 800 cm
\(^{-1}\), with the one at longer wavelengths typically having two emission minima (diopside in Figure 3). In the 600–400 cm
\(^{-1}\) region the combined absorptions lack the V shape of the orthopyroxenes, instead having a more rectangular shape with two or three superposed minima. Clinopyroxene spectra exhibit fewer minor band minima than the spectra of orthopyroxenes; this is probably directly related to the homogeneity and uniformity of the tetrahedral layers of the C\(2/c\) pyroxenes, as described in section 2.1. The two symmetric C\(2/c\) chains should generate virtually the same vibrational frequencies and thus a smaller total number of frequencies than the distinct A and B chains of the P\(bc\)a pyroxenes, which should have a greater number of differing vibrations due to the dissimilarity between the A and B chains. It is noteworthy that several samples obtained for this study arrived labeled as pyroxenes (presumably on the basis of a hand sample identification), but upon spectral analysis became suspect due to significant deviation from these basic spectral shapes. In fact, these suspect samples were subsequently identified as amphiboles and were probably formed by alteration of pyroxenes.

Spectra of samples within the orthopyroxene and clinopyroxene solid solution series exhibit variations in the number of absorption features present and their wavelength positions, which provide further diagnostic information about the composition of the samples within these series. These features are not the actual vibrational frequencies of the mineral; overlapping bands produce band shape changes and shifts in apparent band minimum and may mask low-contrast features due to the complex, coupled interactions of vibrational oscillators. Therefore these bands cannot be deconvolved as is possible with VNIR spectra [e.g., Sunshine et al., 1990]. However, the emissivity minima are still directly related to the vibrational frequencies and are diagnostic, varying in position as a function of composition and structure. In order to discuss these spectral features in terms of their relative rather than absolute position, a scheme has been devised for describing the relative band locations of major features. Band minima that are consistently present in the spectra of a mineral type (e.g., orthopyroxenes) and have a \(\Delta e\) (where \(e\) is emissivity) that is greater than 20% of the total spectral contrast are referred to as “critical absorptions” (CAs); the first critical absorption in a spectrum is always the shortest wavelength feature and is designated CA1, the longest wavelength feature of \(n\) features is designated CA\(n\). There are no designations on the basis of relative importance or absolute band depth because these are subjective (importance) or variable (emissivity) parameters. Absorptions with \(\Delta e\) less than 20% of the total spectral contrast are excluded from the CA designation due to the fact that they may not be resolvable at lower spectral resolutions or are not
Theoretical error in band minimum selection is ±2 cm⁻¹, al-

Table 2. Pyroxene Compositional Data From Microprobe Analysis

<table>
<thead>
<tr>
<th>Sample</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>Cr₂O₃</th>
<th>Fe₂O₃*</th>
<th>FeO</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUR-1820</td>
<td>54.50</td>
<td>0.05</td>
<td>0.31</td>
<td>0.00</td>
<td>0.00</td>
<td>2.67</td>
<td>0.13</td>
<td>16.68</td>
<td>25.29</td>
<td>0.23</td>
<td>0.00</td>
<td>99.65</td>
</tr>
<tr>
<td>BUR-1920</td>
<td>54.45</td>
<td>0.15</td>
<td>0.97</td>
<td>0.00</td>
<td>0.00</td>
<td>13.76</td>
<td>0.28</td>
<td>27.88</td>
<td>0.77</td>
<td>0.01</td>
<td>0.00</td>
<td>98.27</td>
</tr>
<tr>
<td>BUR-2883</td>
<td>48.54</td>
<td>0.01</td>
<td>0.08</td>
<td>0.00</td>
<td>1.54</td>
<td>3.81</td>
<td>20.88</td>
<td>1.90</td>
<td>23.05</td>
<td>0.04</td>
<td>0.00</td>
<td>99.85</td>
</tr>
<tr>
<td>BUR-620</td>
<td>50.51</td>
<td>0.01</td>
<td>1.69</td>
<td>0.00</td>
<td>7.02</td>
<td>9.88</td>
<td>0.73</td>
<td>7.58</td>
<td>21.51</td>
<td>1.91</td>
<td>0.00</td>
<td>100.94</td>
</tr>
<tr>
<td>DSM-AUG01</td>
<td>50.27</td>
<td>0.83</td>
<td>2.93</td>
<td>0.03</td>
<td>3.98</td>
<td>4.74</td>
<td>0.26</td>
<td>15.01</td>
<td>21.26</td>
<td>0.41</td>
<td>0.00</td>
<td>99.72</td>
</tr>
<tr>
<td>DSM-DIO01</td>
<td>55.04</td>
<td>0.01</td>
<td>0.47</td>
<td>0.00</td>
<td>0.00</td>
<td>0.64</td>
<td>0.07</td>
<td>17.99</td>
<td>25.69</td>
<td>0.17</td>
<td>0.00</td>
<td>100.69</td>
</tr>
<tr>
<td>DSM-ENS01</td>
<td>58.51</td>
<td>0.01</td>
<td>0.25</td>
<td>0.00</td>
<td>0.00</td>
<td>6.49</td>
<td>0.17</td>
<td>34.19</td>
<td>0.24</td>
<td>0.00</td>
<td>0.00</td>
<td>99.85</td>
</tr>
<tr>
<td>DSM-HED01</td>
<td>49.96</td>
<td>0.01</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
<td>14.14</td>
<td>7.99</td>
<td>4.32</td>
<td>22.80</td>
<td>0.11</td>
<td>0.00</td>
<td>99.39</td>
</tr>
<tr>
<td>HS-10.4B</td>
<td>48.52</td>
<td>0.02</td>
<td>0.80</td>
<td>0.04</td>
<td>2.95</td>
<td>17.77</td>
<td>4.12</td>
<td>4.07</td>
<td>16.88</td>
<td>1.43</td>
<td>0.15</td>
<td>96.77</td>
</tr>
<tr>
<td>HS-119.4B</td>
<td>52.87</td>
<td>0.02</td>
<td>0.92</td>
<td>0.00</td>
<td>0.00</td>
<td>2.61</td>
<td>7.85</td>
<td>0.29</td>
<td>11.91</td>
<td>24.08</td>
<td>0.65</td>
<td>0.00</td>
</tr>
<tr>
<td>HS-15.4B</td>
<td>54.60</td>
<td>0.01</td>
<td>0.47</td>
<td>0.00</td>
<td>1.12</td>
<td>1.52</td>
<td>0.19</td>
<td>16.23</td>
<td>25.35</td>
<td>0.45</td>
<td>0.00</td>
<td>99.93</td>
</tr>
<tr>
<td>HS-111.4B</td>
<td>51.79</td>
<td>0.25</td>
<td>0.50</td>
<td>0.00</td>
<td>0.34</td>
<td>26.08</td>
<td>0.50</td>
<td>19.43</td>
<td>1.12</td>
<td>0.02</td>
<td>0.00</td>
<td>100.03</td>
</tr>
<tr>
<td>HS-205.4B</td>
<td>51.74</td>
<td>0.40</td>
<td>3.55</td>
<td>0.00</td>
<td>3.87</td>
<td>6.47</td>
<td>0.13</td>
<td>12.88</td>
<td>21.04</td>
<td>1.23</td>
<td>0.00</td>
<td>101.31</td>
</tr>
<tr>
<td>HS-210.4B</td>
<td>64.94</td>
<td>0.04</td>
<td>28.31</td>
<td>0.00</td>
<td>0.00</td>
<td>0.44</td>
<td>0.20</td>
<td>0.00</td>
<td>0.00</td>
<td>0.10</td>
<td>0.00</td>
<td>94.03</td>
</tr>
<tr>
<td>HS-317.4B</td>
<td>54.43</td>
<td>0.00</td>
<td>0.42</td>
<td>0.00</td>
<td>0.00</td>
<td>2.22</td>
<td>0.06</td>
<td>16.22</td>
<td>25.77</td>
<td>0.15</td>
<td>0.00</td>
<td>99.27</td>
</tr>
<tr>
<td>HS-9.4B</td>
<td>57.87</td>
<td>0.02</td>
<td>0.99</td>
<td>0.00</td>
<td>0.62</td>
<td>6.32</td>
<td>0.17</td>
<td>34.86</td>
<td>0.67</td>
<td>0.00</td>
<td>0.00</td>
<td>101.52</td>
</tr>
</tbody>
</table>

*Fe₂O₃ is obtained by recalculation [Droop, 1987].

Values are in units of wt % oxide.

present in every specimen of a similar composition. Figures 4 and 5 show representative spectra for two orthopyroxenes and two clinopyroxenes along with their critical absorptions. In the following discussion of absorption band variability, features will be referred to primarily by their CA designation.

There are four bands in the spectra of quadrilateral pyroxenes having Δε that are greater than 20% of the spectral contrast but that are not considered critical absorptions. These special cases and their significance to mineral identification and discrimination are discussed in detail below.

5.2. Orthopyroxenes

Orthopyroxene spectra exhibit characteristic variations in band presence (or absence) and the positions of emission minima and maxima. Table 3 lists the locations of absorption band minima and statistics for the critical absorptions of the orthopyroxenes studied. At a spectral sampling of 2 cm⁻¹, the theoretical error in band minimum selection is ±2 cm⁻¹, al-

Figure 4. Locations of critical absorptions in orthopyroxenes. Mg₈z spectrum is offset by 0.2 for clarity.
though this error may be increased slightly in selecting the minima of broad bands. Variations in these band positions will be discussed from short to long wavelengths or in order of increasing CA number. Orthopyroxene compositions are described by the molecular percentage (mol %) of the Mg end-member; specimens in the sample collection represent compositions between Mg93 and Mg65.

5.2.1. Critical absorption variation with Mg-Fe substitution. An overall decrease in spectral contrast is observed in the spectra of orthopyroxenes as samples become more Fe-rich (Figure 6), but there are additional diagnostic changes that allow compositional assignment on the basis of spectral characteristics. CA1 changes position as well as shape with increasing Fe content. The CA1 band minimum can be difficult to determine in the most Mg-rich samples due to its broadness (reflected in the standard deviation of the average band position). With increasing Fe, particularly in samples with Mg85 or lower, CA1 becomes narrower and increasingly asymmetric, with the band minimum being positioned on the long-wavelength side of the feature (Figure 6). Additionally, the band minimum is located at increasingly longer wavelengths with increasing Fe, although above Mg85, the band minimum is variable (Figure 7a).

The wavelength position of CA2 also increases with increasing Fe (Figure 7b). Above Mg90, as with CA1, this trend does

![Figure 5. Locations of critical absorptions in clinopyroxenes. Wo49En13Fs38 spectrum is offset by 0.2 for clarity.](image1)

![Figure 6. Emissivity spectra of orthopyroxenes along the Mg-Fe join. Spectra are plotted in decreasing order of Mg number. Vertical lines denote the positions of bands present only in Mg-rich samples. Each tick along the y axis represents a Δε of 0.04.](image2)

Table 3. Positions of Critical Absorptions in Orthopyroxenes

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mg/(Mg+Fe)</th>
<th>CA1</th>
<th>CA2</th>
<th>CA3</th>
<th>CA4</th>
<th>CA5</th>
<th>CA6</th>
<th>CA7</th>
<th>CA8</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMNH-34669</td>
<td>0.91</td>
<td>1090</td>
<td>1069</td>
<td>980</td>
<td>984</td>
<td>957</td>
<td>868</td>
<td>570</td>
<td>548</td>
</tr>
<tr>
<td>NMNH-R14440</td>
<td>0.91</td>
<td>1071</td>
<td>1069</td>
<td>979</td>
<td>984</td>
<td>959</td>
<td>872</td>
<td>571</td>
<td>547</td>
</tr>
<tr>
<td>DSM-ENS01</td>
<td>0.90</td>
<td>1099</td>
<td>1100</td>
<td>976</td>
<td>973</td>
<td>956</td>
<td>871</td>
<td>570</td>
<td>547</td>
</tr>
<tr>
<td>HS-9.4B</td>
<td>0.90</td>
<td>1072</td>
<td>1071</td>
<td>978</td>
<td>974</td>
<td>957</td>
<td>871</td>
<td>571</td>
<td>547</td>
</tr>
<tr>
<td>NMNH-82436</td>
<td>0.89</td>
<td>1067</td>
<td>1069</td>
<td>978</td>
<td>974</td>
<td>957</td>
<td>872</td>
<td>570</td>
<td>547</td>
</tr>
<tr>
<td>NMNH-38833</td>
<td>0.89</td>
<td>1064</td>
<td>1060</td>
<td>978</td>
<td>974</td>
<td>956</td>
<td>871</td>
<td>570</td>
<td>547</td>
</tr>
<tr>
<td>WAR-2889</td>
<td>0.89</td>
<td>1053</td>
<td>1054</td>
<td>979</td>
<td>984</td>
<td>958</td>
<td>874</td>
<td>570</td>
<td>547</td>
</tr>
<tr>
<td>NMNH-119793</td>
<td>0.88</td>
<td>1070</td>
<td>1070</td>
<td>979</td>
<td>953</td>
<td>956</td>
<td>872</td>
<td>570</td>
<td>547</td>
</tr>
<tr>
<td>NMNH-128288</td>
<td>0.85</td>
<td>1048</td>
<td>1048</td>
<td>977</td>
<td>974</td>
<td>955</td>
<td>873</td>
<td>566</td>
<td>542</td>
</tr>
<tr>
<td>NMNH-166555</td>
<td>0.78</td>
<td>1049</td>
<td>1049</td>
<td>974</td>
<td>974</td>
<td>957</td>
<td>873</td>
<td>567</td>
<td>534</td>
</tr>
<tr>
<td>BUR-1920</td>
<td>0.78</td>
<td>1053</td>
<td>1056</td>
<td>975</td>
<td>974</td>
<td>957</td>
<td>881</td>
<td>562</td>
<td>542</td>
</tr>
<tr>
<td>NMNH-93527</td>
<td>0.78</td>
<td>1051</td>
<td>1050</td>
<td>974</td>
<td>974</td>
<td>957</td>
<td>873</td>
<td>566</td>
<td>537</td>
</tr>
<tr>
<td>NMNH-120414-1</td>
<td>0.76</td>
<td>1040</td>
<td>1037</td>
<td>972</td>
<td>974</td>
<td>956</td>
<td>879</td>
<td>562</td>
<td>537</td>
</tr>
<tr>
<td>NMNH-C2368</td>
<td>0.75</td>
<td>1052</td>
<td>1056</td>
<td>971</td>
<td>974</td>
<td>955</td>
<td>874</td>
<td>563</td>
<td>542</td>
</tr>
<tr>
<td>NMNH-B18427</td>
<td>0.67</td>
<td>1040</td>
<td>1044</td>
<td>970</td>
<td>974</td>
<td>954</td>
<td>874</td>
<td>563</td>
<td>536</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>1061</td>
<td>1060</td>
<td>976</td>
<td>975</td>
<td>956</td>
<td>873</td>
<td>567</td>
<td>543</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>17</td>
<td>15</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Minimum λ</td>
<td>1040</td>
<td>1037</td>
<td>970</td>
<td>953</td>
<td>954</td>
<td>868</td>
<td>562</td>
<td>534</td>
<td>507</td>
</tr>
<tr>
<td>Maximum λ</td>
<td>1099</td>
<td>1100</td>
<td>980</td>
<td>984</td>
<td>959</td>
<td>881</td>
<td>571</td>
<td>548</td>
<td>515</td>
</tr>
<tr>
<td>Δλ</td>
<td>59</td>
<td>63</td>
<td>10</td>
<td>31</td>
<td>5</td>
<td>13</td>
<td>9</td>
<td>14</td>
<td>8</td>
</tr>
</tbody>
</table>
not continue; instead, the position of the band becomes variable independent of composition. Until samples closer to 100% Mg can be examined, Mg90 must be considered the threshold for which this correlation holds true.

CA3 does not exhibit as clearly the same trend that CA1 and CA2 do. The location of this band is consistently near 956 \text{ cm}^{-1}, such that in 14 samples, the range of values only varies by 5 \text{ cm}^{-1}, which is near the spectral resolution (4 \text{ cm}^{-1}) of the data (Table 3). If a similar trend is present in CA3, it may only be more clearly observed at a greater spectral resolution.

Another trend related to relative Mg-Fe content that is observed is broadening and shallowing of the CA4 feature at \(\approx 870 \text{ cm}^{-1} \) (Figure 6). Much like the trend observed for the band position of CA1, CA4 band depth (\(\Delta \varepsilon \), measured from the emissivity maximum between CA3 and CA4 to the CA4 band minimum) increases with increasing Mg content in a generally linear fashion up to Mg/(Mg + Fe) of about 0.90, at which point, the trend flattens (Figure 8a). The width of CA4 decreases with increasing Mg content, also in a generally linear fashion (Figure 8b). Similar trends in the broadening and weakening of this band were observed in natural and synthetic samples studied by Estep et al. [1971]. Similarly, weak minor bands in the 800–600 \text{ cm}^{-1} region resulting from symmetric T-O-T stretching vibrations also exhibit a weakening in band strength with increasing Fe.

Critical absorptions in the long-wavelength reststrahlen bands (CA5–CA8) exhibit very little deviation in their wavenumber position as a function of Mg/(Mg + Fe), but two features do display changes in spectral contrast. CA6 and, in some but not all samples, CA8 (\(\approx 545 \) and \(\approx 450 \text{ cm}^{-1} \)) are reduced in spectral contrast as ferrosilite content increases, and CA8 may be broadened as well (Figure 6). Decreasing strength of CA8 with increasing ferrosilite content was observed by Estep et al. [1972] in connection with increasing disorder in the Fe\(^{2+}\) distribution over the M1 and M2 sites due to rapid quenching from high temperature. This disorder affects cation-oxygen stretching vibrations, bending vibrations of Si-O-Si groups in the silicate chain, and lattice modes, all of which result in absorptions in the 600–400 \text{ cm}^{-1} region. This disorder and related spectral trend also can be correlated with increasing degrees of shock in meteoritic or lunar samples [Estep et al., 1972]. However, based on the relatively large
crystal size of the samples in this study, quenching seems unlikely, and shock can also be eliminated. Therefore caution should be used in applying the spectral contrast of CA8 as a measure of Fe content, temperature-related disorder, or significant shock pressures.

5.2.2. Additional (noncritical) features. Two small, sharp absorptions in Mg-rich orthopyroxene spectra, near 1010 and 929 cm$^{-1}$ (denoted by vertical lines in Figure 6), are not consistently present in all orthopyroxene spectra. With increasing Fe content, these bands are reduced in emissivity, and in samples with compositions between Mg$_{95}$ and Mg$_{80}$ and lower, the bands are reduced to weak shoulders or disappear completely.

5.2.3. Additional cation substitution. All of the variability described above is correlated with relative Mg/Fe content. Orthopyroxenes can have up to \sim5 mol % Ca, but no correlations between Ca content and band positions or shapes were observed, suggesting that small changes in Ca abundance (± 2–3 mol %) are not enough to produce significant variations in the structure and thus the spectral character of orthopyroxenes. Substitution of Al for Si in the tetrahedral site is also common in orthopyroxenes, but no trends related to Al content were observed. Significant changes in T-O distance as a function of Al/(Al + Si) are known to occur (0 to \sim0.375 Al/(Al + Si)), but are not as well defined for orthopyroxenes as for clinopyroxenes [Cameron and Papiké, 1981]; however, based on the somewhat limited range of Al/(Al + Si) for this set of orthopyroxenes (0.01–0.07), it is likely that such a trend would not be visible in this data set (see also discussion of Al substitution in clinopyroxenes, below).

5.2.4. Discussion. There are several characteristics of orthopyroxene spectra that are variable with increasing Fe content in the mineral, but no significant variations with increasing Ca or Al abundances were observed. Three parameters, namely, CA1 position, the presence or absence of bands at 1010 and 929 cm$^{-1}$, and the wavenumber position of CA2, may be plotted as functions of Mg/(Mg + Fe), and these plots may be used to approximately determine the composition of an unknown orthopyroxene. Scatter in the data is probably largely due to the cumulative effect of minor impurities in each sample or, in other words, natural variability. Although the observed absorption band variations have been presented as correlating with Mg/(Mg + Fe), it is important to recall that these band variations are an indirect result of cation substitution on the T-O stretching vibrations. The majority of Mg-Fe substitutions occur in the octahedral layer, and because Fe$^{2+}$ has a larger ionic radius than Mg$^{2+}$, the effect of substituting greater amounts of Fe$^{2+}$ for Mg$^{2+}$ in M2 is to progressively increase the size of the M2 octahedron. As the octahedron enlarges, it forces the A and B tetrahedral chains to straighten up to 10$^\circ$ and 5$^\circ$, respectively [Cameron and Papiké, 1981]. As the chain straightens, the mean T-O and mean bridging T-O bond lengths decrease. As the T-O bonds shorten (and presumably strengthen), their frequencies of vibration are expected to increase. However, the observed trends are in direct opposition to this expectation, with band positions decreasing as Fe content increases. We cannot confidently explain this conflict, but it is possible that the greater atomic weight of Fe relative to Mg may slow the vibrational frequency more than shortening T-O bonds can increase it.

5.3. Clinopyroxenes

5.3.1. Pigeonite. Monoclinic pyroxenes having \sim5–15 mol % Ca are referred to as pigeonite. The emissivity spectrum of sample Wo$_{10}$En$_{36}$Fs$_{54}$ 33,34, a synthetic pigeonite, is shown in Figure 9. Despite the change in structure from orthorhombic (space group Pbca) to monoclinic (P2$_1$/c), the spectral character of pigeonite is similar to that of the orthopyroxenes (Figure 4) rather than the high-Ca clinopyroxenes (Figure 5). Between 1100 and 1000 cm$^{-1}$, the single feature (CA1) in orthopyroxene spectra is split into two bands in the pigeonite spectrum. The CA2 and CA3 (\sim950–970 cm$^{-1}$) features in orthopyroxenes may be comparable to the 950 cm$^{-1}$ band in the pigeonite, and both spectra contain a prominent band (CA4 in opx) in the vicinity of 875 cm$^{-1}$. The broad spectral features between 850 and 650 cm$^{-1}$ in the pigeonite spectrum are due to anomalous scattering in the sample, which is very fine grained, and would not appear in the spectrum of a coarse particulate sample. In the range from 600 to 400 cm$^{-1}$, the pigeonite and orthopyroxene spectra are also similar, having a strong absorption feature near 500 cm$^{-1}$, with weaker absorptions on both the short- and long-wavelength sides of the band. In summary, it appears from this pigeonite sample that the primary spectral effect of adding calcium to the orthopyroxene structure (thus making a low-Ca clinopyroxene) is to alter the shapes of the shortest wavelength (T-O stretching) feature(s). Differences in the region of T-O bending (longer wavelengths) are more subtly expressed as variations in band position, without addition or removal of significant absorption features.

5.3.2. High-calcium clinopyroxenes. High-Ca clinopyroxenes (henceforth referred to as clinopyroxenes, space group C2/c) have fewer absorption features than their orthorhombic counterparts (compare Figures 4 and 5). As in orthopyroxene spectra, the absorptions in clinopyroxene spectra also exhibit characteristic variations in location that are linked to the relative amounts of Mg and Fe in the sample as well as Ca, Na, and Mn. Table 4 lists the average position of the band minima for the critical absorptions of clinopyroxenes. Historically, clinopyroxene nomenclature has been variable, but the International Mineralogical Association [Morimoto, 1989] defines diopside and hedenbergite as the end-member compositions CaMgSi$_2$O$_6$ and CaFe$^{2+}$Si$_2$O$_6$, respectively, and augite as the solid solution mineral (Ca$_{2-6}$Mg$_{1-6}$Fe$^{2+}$)$_{2}$Si$_2$O$_6$. Variations in composition are described by Mg/(Mg + Fe) or by the molecular percentage of each end-member (Wo, En, and Fs). Other cations may substitute into the quadrilateral clinopyroxenes in nontrace amounts (e.g., Al$^{3+}$ and Ti$^{4+}$), but no correlations between band position and abundances of these...
5.3.3. Critical absorption variation with Mg-Fe substitution. As in the case of the orthopyroxenes, assignment of the CA1 band minimum may be difficult due to the broadness of the band; however, the position of the band minima for CA1–CA5 in the clinopyroxenes is generally shifted to longer wavelengths (lower wavenumbers) with increasing Fe content. This trend is most apparent in samples with less than Mg70–80.

The structural effect of substituting Fe2+ for Mg2+ in clinopyroxene is to increase the mean ionic radius (VIM1/VIM2). The increased size of the octahedral layer results in a decrease in the tetrahedral chain angle as well as an increase in the tetrahedral size and mean T-O (bridging) angle [Cameron and Papike, 1981]. Although it is difficult to ascertain exactly which of these T-O bond vibrations are dominating the mineral spectrum, it is possible that the increase in the tetrahedral size with increasing Fe2+ in M2, as well as the greater atomic weight of Fe2+, produces the shift to lower wavenumbers of the CA1–CA5 band positions as T-O bonds lengthen.

5.3.4. Critical absorption variation with Ca abundance. Unlike orthopyroxenes, the spectral characteristics observed in samples from the clinopyroxene solid solution series are variable not only with relative Mg-Fe content, but also with differences in Ca abundance, and two distinct Ca-related trends are observed. First, with decreasing Ca content, the reststrahlen bands between 1200 and 800 cm⁻¹ become less sharp and commonly exhibit less spectral contrast. Figure 12 shows a pair of spectra (NMNH-R17421 and WAR-6474) that have similar Mg/(Mg + Fe) ratios but have “high” and “low” Ca contents. (The second pair in Figure 12, NMNH-16168 and BUR-620, displays the same characteristics, but with a more Fe-rich Mg/(Mg + Fe) ratio than the first pair). Compositions having 45–50 mol % Ca typically have the sharpest features (NMNH-R17421 and NMNH-16168 in Figure 12), which make band minimum identification easier than in lower Ca samples, which tend to have broader features and may display minor features that are not observed in the higher calcium samples.
smaller Fe$^{2+}$ are populated by a greater number of different cations (e.g., the M$_2$ sites of clinopyroxenes with reduced Ca abundances clinopyroxenes with the highest abundances of Ca. In contrast, mary clinopyroxene vibrations are probably exhibited by the T-O bonds within the tetrahedral chain should vibrate simi-
tortions around the octahedral sites, and the majority of the sites are similar, the tetrahedral chain experiences fewer dis-
sites are the same size. Because the majority of the octahedral
produce the most regular structure because the majority of M$_2$
abundances of up to 4 wt % MnO [Deer et al., 1992], and it is
like that there is some solid solution between the Ca-
pyroxenes and the Mn-rich end-member johannsenite (Ca(Mn,Fe)Si$_2$O$_6$) [Deer et al., 1992; Cameron and Papike, 1981]. Although not considered one of the quadrilateral py-
roxene compositions, johannsenite will be discussed here in the
context of variations in Mn content in the quadrilateral sam-
Figure 13. Emissivity spectra of johannsenite BUR-2883 (Wo$_{50}$En$_{13}$Fs$_{24}$Jo$_{14}$) and clinopyroxenes DSM-HED01 (Wo$_{50}$En$_{13}$Fs$_{24}$Jo$_{14}$) and NMNH-16168 (Wo$_{49}$En$_{22}$Fs$_{27}$Jo$_{3}$). Vertical lines denote the locations of spectral features described in the text. Spectra are offset by 0.15 for clarity.

Figure 12. Emissivity spectra of Ca-rich and Ca-poor quadrilateral clinopyroxenes. The vertical line denotes the location of the 883 cm$^{-1}$ feature, and subscripts refer to the fraction of M$_2$ sites occupied.

shows a comparison of two high calcium diopsides (samples NMNH-R17421 and NMNH-16168) to the spectra of two au-
gites with similar Mg/(Mg + Fe), but having less than 45 mol % Ca (samples WAR-6474 and BUR-620). In both low-Ca cases, there is ~7–7.5 mol % Na present, which fills the re-
maining M$_2$ sites. These Na-bearing augites are distinguished
from high-Ca clinopyroxene by the presence of a weak feature at ~883 cm$^{-1}$ and from an augite without Na, NMNH-9780, by a substantially different band shape in the same region. Al-
though Na and Ca have very similar ionic radii, their electro-
static environments are different because Na$^+$ is monovalent, whereas Ca$^{2+}$ is divalent. When Na$^+$ is substituted for Ca$^{2+}$, the charge deficiency of Na$^+$ must be accommodated, and common.

Fe$^{3+}$ makes a paired substitution with Na$^+$. Although microprobe analysis cannot distinguish between Fe$^{2+}$ and Fe$^{3+}$, both Na-augites are estimated to have ~10 mol % Fe$^{3+}$ on the basis of charge balance considerations. In both cases there is thus an excess of Fe$^{3+}$ relative to the Na$^+$ that must be accommodated. In both cases the amount of excess Fe$^{3+}$ is approximately equivalent to the amount of IVAl$^{3+}$ in the T site, thus balancing the remaining Fe$^{3+}$. Therefore, although the M$_2$ site size may not change significantly, the ac-
companying substitutions result in changes in both the electro-
static environment of the M$_2$ site and the size of the M$_1$ and T sites, all of which change T-O bond character and are the most likely sources of the changes in vibrational character of these samples.

5.3.5. Critical absorption variation with Mn abundance. Manganese is commonly found in Fe-rich clinopyroxenes in abundances of up to 4 wt % MnO [Deer et al., 1992], and it is likely that there is some solid solution between the Ca-
pyroxenes and the Mn-rich end-member johannsenite (Ca(Mn,Fe)Si$_2$O$_6$) [Deer et al., 1992; Cameron and Papike, 1981]. Although not considered one of the quadrilateral py-
roxene compositions, johannsenite will be discussed here in the
context of variations in Mn content in the quadrilateral sam-
Johannsenite BUR-2883, Wo$_{50}$En$_{13}$Fs$_{24}$Jo$_{36}$ (~21 wt % MnO), where Jo represents the Mn end-member, is slightly enriched in a quadrilateral component. Two samples will be compared to BUR-2883: DSM-HED01, Wo$_{50}$En$_{13}$Fs$_{24}$Jo$_{14}$ (8
maximum to the emissivities of the maxima immediately adjacent to the band (Figure 14). This ratio is expressed as (emax1/emin)/(emin/emax2), where emax1 is the emissivity maximum on the short-wavelength side of 515 cm⁻¹, emin is the band minimum, and emax2 is the emissivity maximum on the long-wavelength side of 515 cm⁻¹. With increasing Fe content, this band is apparently reduced in emissivity (Figures 5 and 10) and is not at all distinguishable in samples with compositions having <20 mol % Mn; of four samples with 20–30 mol % Mn, two samples display a weak 515 cm⁻¹ feature and two do not. Thus the presence (and strength) or absence of the 515 cm⁻¹ band may be used to broadly classify an unknown sample as either Mg- or Fe-rich. As the feature gradually disappears, there is no progressive variation in its position; therefore it is either becoming reduced in emissivity or is being masked as the adjacent CA4 band migrates to longer wavelengths (or some combination of both). Another small but distinctive absorption at ~1010 cm⁻¹ usually present in the spectra of Ca-rich (>45 mol % Ca) samples is either substantially reduced in strength or is not present at all in the low-Ca compositions.

The reduction in depth of some bands is probably attributable to the same effect as in the case of band position shifts described above, i.e., increasing numbers of heterogeneous

![Figure 14. Scatterplot of clinopyroxene ~515 cm⁻¹ band depth ratio versus mol % Mg.](image)

Fe-rich clinopyroxene and johannsenite spectra exhibit several similarities in band shape (Figure 13), a characteristic previously observed by Rutstein and White [1971] in transmission spectra. In the Rutstein and White study the most noticeable difference with the transition from Mg to Fe to Mn was the displacement of a sharp band near 900 cm⁻¹ (CA3). In the present work we do not clearly observe this trend, although CA3 in johannsenite is much deeper relative to CA2 than in the quadrilateral samples (Figure 13), a trend which holds true when compared to the range of clinopyroxene solid solution compositions. Additional variations between the johannsenite spectrum and the Fe-rich clinopyroxene spectra are also observed. Between 600 and 400 cm⁻¹, johannsenite is similar to the Fe-rich quadrilateral pyroxenes in having only two absorptions, CA4 and CA5. The position of CA4 in BUR-2883 is ~520 cm⁻¹, but as Mn content decreases, the band is located at higher wavenumbers (shorter wavelengths), 532 cm⁻¹ in DSM-HED01 and 536 cm⁻¹ in NMNH-16168. The CA4 feature also becomes broader with decreasing Mn content, as demonstrated by the vertical line at ~500 cm⁻¹ in Figure 13, which is placed to coincide with the long-wavelength emission maximum adjacent to CA4 in johannsenite. An emission maximum at ~405 cm⁻¹ in johannsenite is also displaced to higher wavenumbers as Mn content decreases.

Because johannsenite has the same crystal structure as the clinopyroxenes (C₂/c) and appears to form a solid solution with the clinopyroxenes, it is not unusual that the spectra of johannsenite and quadrilateral clinopyroxenes look quite similar. Mn²⁺ may substitute into the clinopyroxene structure in either the M1 or M2 site; however, because all three samples described above have M2 sites that are almost completely filled with Ca and have insufficient Mg²⁺ and Fe²⁺ to fill the M1 site, the majority of the Mn²⁺ in these samples must be in the M1 site. The Mn²⁺ ion is larger than both the Fe²⁺ and Mg²⁺ ions, resulting in an increase in the size of the M1 site when Mn²⁺ is substituted. As the mean ionic radius of VIM1 + VIM2 increases, the mean T-O distance also increases. Assuming no other significant changes, an increase in the T-O distance results in longer bonds that should vibrate more slowly, which is consistent with the observation that CA4 and nearby spectral features are at lower wavenumbers (longer wavelengths) with increased Mn content. Although the Fe-rich clinopyroxenes DSM-HED01 and NMNH-16168 contain small amounts of Mn, they do not exhibit the differences (relative to CA2-CA3 band depth, CA4 band position and width, and location of the longest wavelength emission maximum) that the johannsenite sample displays relative to the quadrilateral clinopyroxenes. This determination suggests that these spectral characteristics are only distinguishable in samples with Mn contents greater than the typical amounts observed in quadrilateral pyroxenes.

5.3.6. Additional features

A spectral absorption between CA4 and CA5 (near 515 cm⁻¹) is not consistently present in all clinopyroxene spectra. The “disappearance” of this band is shown by a ratio of the emissivity of the 515 cm⁻¹ band minimum to the emissivities of the maxima immediately adjacent to the band (Figure 14). This ratio is expressed as (emax1/emin)/(emin/emax2), where emax1 is the emissivity maximum on the short-wavelength side of 515 cm⁻¹, emin is the band minimum, and emax2 is the emissivity maximum on the long-wavelength side of 515 cm⁻¹. With increasing Fe content, this band is apparently reduced in emissivity (Figures 5 and 10) and is not at all distinguishable in samples with compositions having <20 mol % Mn; of four samples with 20–30 mol % Mn, two samples display a weak 515 cm⁻¹ feature and two do not. Thus the presence (and strength) or absence of the 515 cm⁻¹ band may be used to broadly classify an unknown sample as either Mg- or Fe-rich. As the feature gradually disappears, there is no progressive variation in its position; therefore it is either becoming reduced in emissivity or is being masked as the adjacent CA4 band migrates to longer wavelengths (or some combination of both). Another small but distinctive absorption at ~1010 cm⁻¹ usually present in the spectra of Ca-rich (>45 mol % Ca) samples is either substantially reduced in strength or is not present at all in the low-Ca compositions.

The reduction in depth of some bands is probably attributable to the same effect as in the case of band position shifts described above, i.e., increasing numbers of heterogeneous

![Figure 15. Scatterplot of secondary Christiansen feature position versus Mg/(Mg + Fe). Error bars along the wavenumber axis are smaller than the dimension of the symbols.](image)
vibrational modes due to increased distortions of the tetrahedral chain around octahedral sites of variable coordination.

5.4. Secondary Christiansen Feature

At certain wavelengths in the emissivity spectra of silicate minerals, emissivity is (or is close to) unity, and these features are referred to as Christiansen maxima. The Christiansen maximum is directly associated with the Christiansen frequency, which is the frequency at which the real part of the refractive index of the sample, n, equals 1 [Henry, 1948; Conel, 1969; Hapke, 1993]. This region of anomalous dispersion is located at a slightly shorter wavelength than the fundamental vibrational mode with which it is associated, and absorption is low, resulting in an emission maximum. Because the emission maximum does not exactly coincide with the Christiansen frequency, it is referred to as a Christiansen maximum, or Christiansen feature [Salisbury, 1993]. These emission maxima may also be displaced due to environmental factors such as atmospheric pressure [Logan et al., 1973; Salisbury, 1993; see also Hapke, 1993], although this effect is minimal within the variability of terrestrial pressures. The “primary” Christiansen feature is associated with the strongest vibrational features; for silicates this is in the region of 1350–1100 cm⁻¹ (~7.5–9 μm) on the short-wavelength side of the Si-O stretching feature [Salisbury, 1993; Hapke, 1993]. In this study a similar feature on the short-wavelength side of the Si-O bending region (600–400 cm⁻¹) will be referred to as the secondary Christiansen feature.

The general position of the secondary Christiansen feature is diagnostic in quadrilateral pyroxenes. Plotting the wavenumber position of the secondary Christiansen feature on a correlation chart versus Mg/(Mg + Fe) allows discrimination of orthorhombic and monoclinic pyroxenes (Figure 15). Furthermore, the relative Mg/(Mg + Fe) ratio of minerals within each structural group may be estimated from the location of this feature, as there is a roughly linear trend between composition and the location of this Christiansen feature.

6. Nonquadrilateral Pyroxenes

Nonquadrilateral pyroxenes contain significant amounts of Na⁺, Fe³⁺, Al³⁺, and Li⁺ in the M1 and M2 sites [Papike et al., 1974]. End-member compositions include acmite (NaFe³⁺Si₂O₆), jadeite (NaAlSi₂O₆), and spodumene (LiAlSi₂O₆). Acmite (also referred to as aegirine) is typically found in alkaline and peralkaline rocks such as alkali granites and syenites. Some solid solution with augite (aegirine-augite) is possible in regionally metamorphosed rocks such as glaucophane- and riebeckite-bearing schists [Deer et al., 1992]. Jadeite is dominantly found in metamorphic rocks, and spodumene is a characteristic mineral of Li-rich granitic pegmatites [Deer et al., 1992]. Jadeite and spodumene compositions rarely deviate from their ideal formulas, although some excess Si (~2 atoms per formula unit based on 6 oxygens) may be found in spodumene. All of the nonquadrilateral compositions belong to space group C2/c, like the quadrilateral Ca-pyroxenes. The only naturally occurring spodumene is α-spodumene (C2/c), but other high-temperature polymorphs (β- and ϒ-spodumene) having tetragonal and hexagonal space groups are possible [Deer et al., 1978].

There are a total of five high-quality nonquadrilateral samples in the suite studied: three spodumenes, one acmite, and one jadeite. Because of the small number of samples, conclusions regarding the links between their crystal chemistry and their spectra are subject to revision as more samples are acquired in the future.

The TIR spectra of nonquadrilateral compositions exhibit a significantly different morphology than the spectra of the quadrilateral minerals (Figure 3), permitting their rapid identification as nonquadrilateral compositions. Spectra of these minerals are very similar in shape, having a single, broad feature with smaller superposed features in the 1200–800 cm⁻¹ region rather than the multiple bands observed in the spectra of quadrilateral orthopyroxenes and clinopyroxenes. The overall shape of the feature broadens within the series, ranging from ~1150 to 850 cm⁻¹ in acmite to 1200–850 cm⁻¹ in jadeite and 1250–850 cm⁻¹ in spodumene. The increasing wavenumber position of the T-O stretching absorption features is correlated with the decreasing ionic radii of the cations. Acmite, with the largest mean ionic radius, should vibrate more slowly (lower frequencies, longer wavelengths) than jadeite, which has a smaller mean ionic radius. Smaller still is the Li-Al cation pair in spodumene, which exhibits the highest wavenumber (highest frequency, shortest wavelength) absorption features of the three minerals. The reststrahlen features at long wavelengths, between 700 and 400 cm⁻¹, also become progressively broader in the transition from acmite to jadeite to spodumene.

The differences between the spectra of sodic and lithium pyroxenes and quadrilateral compositions can be related to the occupancy of the M cation sites, their distortions, and the subsequent influence on the tetrahedral chain angle and T-O bond lengths. As in the Ca-pyroxenes, the tetrahedral chain angle in Na-pyroxenes decreases with increasing mean ionic radius in the M sites (M₁M₁ + M₂M₂). However, the chain angles in Na-pyroxenes are ~10° larger for a given mean ionic radius than the Ca-pyroxenes (i.e., the mean chain angle is greater when M₂ is smaller) because the mean ionic radius of the Na-pyroxenes is smaller than that of the Ca-pyroxenes [Cameron and Papike, 1981]. Because Ca²⁺ and Na⁺ are not significantly different in size, the greatest contribution to the difference in mean ionic radius between the Ca- and Na-pyroxene series comes from the replacement of Mg²⁺ in the quadrilateral minerals by Fe³⁺ and Al³⁺ in the sodic compo-
sitions. As the size of the M1 cation increases within the Na-
pyroxene series (from Al-bearing jadeite to Fe$^{3+}$-bearing ac-
mite), the tetrahedral chain becomes more kinked because the
M1 octahedron increases in size, and the octahedral edge is
also enlarged [Cameron and Papike, 1981]. The straightening
of the chain is accommodated by an increase in the T-O (bridg-
ing) distances. In pure spodumene the mean chain angle is
greater than that of the Na-pyroxenes (consistent with the
significantly smaller M2 lithium cation) and is actually 190°,
which physically correlates to an opposing rotational sense.
Unlike the Na-pyroxenes, the linkage between the octahedral
and tetrahedral layers is accommodated by expanding the tet-
rahedral edge (rather than the octahedral edge) and increasing
the angle of O-T-O [Hawthorne and Grundy, 1977].

Spectra of nonquadrilateral minerals exhibit variability in
their secondary Christiansen feature positions similar to that
exhibited by the Mg-Fe pyroxenes and the Ca-pyroxenes. In
addition, variations in the position of the primary Christiansen
feature are also prominent in the nonquadrilateral series as
described above. A plot of the primary versus secondary Chris-
tiansen feature position can be used to distinguish between the
three end-members (Figure 16).

A greater understanding of the relationships between the
crystal chemistries and spectral characteristics of nonquadrilat-
eral pyroxenes could be obtained with the acquisition of not
only more end-member samples, but samples in the solid so-
lution region between Ca-pyroxene and Na-pyroxene (i.e., om-
phacites and aegirine-augites). Data from these minerals
should permit a better tracking of the spectral transitions be-
tween quadrilateral and sodic compositions.

7. Application to Unknown Sample
Identification
7.1. Laboratory Samples

Many compositional analysis instruments, such as the elec-
tron microprobe, require long-duration, multiple-point analy-
ses and/or extensive sample preparation. TIR emission and
reflectance measurements, on the other hand, do not require
long sample analysis times, nor do they require that the sample
be specially prepared. Bulk samples and crushed samples may
be analyzed, and no sample mounting is necessary. Thus for
basic compositional analysis of an unknown sample, the infra-
red technique may be an easy, time saving tool.

Based on the pyroxene samples examined thus far, several
constraints may be placed on the ability to identify unknown
samples via their thermal infrared spectra, using the number of
absorption features, band shapes, and band positions in a pro-
cess that progressively narrows down to the appropriate com-
position. Structural determination (clino- versus ortho-) is rel-
atively straightforward on the basis of spectral morphology
(i.e., the number of emissivity minima and their relative loca-
tions). If the sample is a quadrilateral pyroxene, the relative
Mg-Fe content may be approximately established by plotting
the wavenumber positions of several diagnostic spectral fea-
tures on the plots presented in this paper. For high-Ca clinopy-
roxenes, Ca-rich and Ca-poor varieties also can be distin-
guished, as well as Na substitution. Some spectra of unknown
samples may exhibit characteristics like those described here
for the nonquadrilateral pyroxenes, such as a single broad
feature at short wavelengths. If so, the simplest way to distin-
guish whether the sample is acmite, jadeite, or spodumene is to
plot the positions of the primary and secondary Christiansen
features. If a sufficiently broad spectral library is available,
band matching or linear deconvolution algorithms may be used
to identify samples even more rapidly than could be done by
hand.

7.2. Identification in Complex Lithologies
and Remote Sensing Data

Throughout this paper, the discussion of pyroxene discrimi-
nation and identification from TIR spectra has focused on
pure physical samples in a laboratory setting, but the ability
to identify and discriminate between pyroxenes (and other min-
erals) in rock samples or in planetary remote sensing data sets
has important implications for broader applications of the data
presented here. Clearly, the level of detail with which we have
examined pyroxene spectral systematics is unlikely to be re-
solvable in the real world of remote sensing. TIR spectra ac-
quired by remote sensing instruments are not sampling pure
minerals, but rather a complex mixture of atmospheric constitu-
ts and multimineralic rocks, if not mixtures of rocks and
other surface materials (e.g., soils and vegetation). Remotely
acquired spectra also commonly have lower signal-to-noise
and/or lower spectral resolution than laboratory data. How-
ever, this does not preclude identification of pyroxenes in spec-
tra of mixed surfaces, or even additional details of structure
and composition.

At sufficiently large particle sizes (greater than ~65 μm) and
in solid samples the spectrum of a physical mixture is the same
as the spectrum derived by adding the component mineral
spectra linearly in proportion to their abundance [Christensen
et al., 1986; Crown and Pieters, 1987; Thomson and Salisbury,
1993]. In the reverse sense, mixture spectra can be decon-
volved in order to determine the component minerals and their
abundances [Johnson et al., 1983, 1992; Sabol et al., 1992; Mus-
tard and Pieters, 1989; Ramsey and Christensen, 1998]. Hamilton
and Christensen [this issue] applied the linear least squares
deconvolution algorithm of Ramsey and Christensen [1998] to a
collection of spectra of pyroxene-bearing mafic and ultramafic
rocks. The linear deconvolution technique was successful not
only in determining the rocks’ modal mineralogy, but also in
distinguishing between orthopyroxene and clinopyroxene, the
approximate pyroxene Mg-Fe solid solution composition, and
the general composition of other components such as plagio-
clase feldspar [Hamilton and Christensen, this issue]. Because
linear deconvolution has been demonstrated to make these
distinctions, the diagnostic features of pyroxenes described in
this paper, although not individually distinguishable in a mul-
timineralic spectrum, clearly must contribute to the spectrum.

Remote sensing instruments typically must sacrifice either
spatial or spectral resolution in order to meet power and/or
data rate constraints. For example, the Mariner 6 and 7 infra-
red spectrometer (IRS) instruments obtained TIR spectral
data of Mars with 2 cm$^{-1}$ sampling; however, the spatial res-
olution was of the order of hundreds of kilometers. The Mars
Global Surveyor Thermal Emission Spectrometer (TES) has a
lower spectral resolution (selectable 5 or 10 cm$^{-1}$ sampling)
but achieves a greater spatial resolution (3 km per pixel). At
lower spectral sampling there is the potential for spectral fea-
tures to become less well resolved. Figure 17 shows the spectra
of an orthopyroxene and a clinopyroxene at 2, 5, and 10 cm$^{-1}$
spectral sampling, the latter two coinciding with the exact
bandpasses of the TES. Spectra with 5 cm$^{-1}$ sampling are
virtually indistinguishable from the 2 cm$^{-1}$ data, except for a
slight decrease in the apparent smoothness of the narrowest band minima. At 10 cm$^{-1}$ sampling this effect is greater, but all of the original band minima are still apparent. Clearly, for narrow diagnostic features that vary in band position by only a few wavenumbers, variations between samples will no longer be resolvable at 10 cm$^{-1}$ sampling (e.g., opx CA2, Figure 18b and Table 3). However, bands that vary in position by greater amounts (e.g., opx CA1) will remain sufficiently resolved to permit them to be used for identification purposes (Table 3 and Figure 18a, compare to Figure 7a). In fact, when laboratory spectra of rocks are convolved to 10 cm$^{-1}$ sampling and run through the linear deconvolution algorithm, the decrease in accuracy of modal abundance determination is only about 10% [Hamilton, 1999; Hamilton and Christensen, this issue]. Finally, deconvolution analyses of TES spectra of Mars are successfully distinguishing mineral components with compositions and abundances that are consistent with laboratory studies of similar spectral shapes and are geologically plausible. These results suggest that the careful application of the detailed laboratory analyses described in this paper to the interpretation of remote sensing data is legitimate [Christensen et al., this issue, (a)].

8. Conclusion

The thermal emission spectra of pyroxenes exhibit a large number of variations in band shape, depth, and position that are related to systematic changes in crystal structure and chemistry. The trends in these variations can be used to determine the structure and general composition of an unknown sample, including the ability to determine relative quadrilateral or non-quadrilateral composition, quadrilateral solid solution, and major element cation substitutions. Combined application of these determinative characteristics to the discrimination of pyroxene compositions in the laboratory may allow for faster initial analysis of unknown samples. This increased understanding of the spectral variability of pyroxenes will also allow for greater confidence in a higher level of geologic interpretation than might otherwise be possible in remote sensing data.

Acknowledgments. I would like to extend my deep appreciation to the National Museum of Natural History (NMNH) at the Smithsonian Institution for donating the majority of samples used in this study. Additional samples were graciously provided by the USGS and Los Angeles County Museum of Natural History. I am especially grateful to Don Lindsley for synthesizing pigeonite Wo$_{33}$En$_{34}$Fs$_{33}$ and to J. Holloway for assistance in synthesizing diopside sample VEH-DIO01. V.E.H. was supported by a National Physical Science Consortium Graduate Fellowship, with stipend support from the Jet Propulsion Laboratory. The author would like to thank J. Salisbury, M. Gaffey, and an anonymous reviewer for comments and suggestions that have helped improve the manuscript.

References
