One Spectrometer, Two Spectra: Complementary Hemispherical Reflectance and Thermal Emission Spectroscopy Using a Single FTIR Instrument

Victoria E. Hamilton & Paul G. Lucey
Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i at Manoa; hamilton@higp.hawaii.edu

Advantages of a Dual System

- Emission measurements
 - Directly comparable to remote sensing measurements
 - Can cover longer wavelengths using DTGS detector than reflectance
 - Directly comparable to hemispherical reflectance measurements via Kirchhoff's Law
 - But few laboratories make these measurements
- Reflectance measurements
 - More traditional
 - Covers shorter wavelengths than emission using MCT-A detector
 - Hemispherical reflectance comparable to emission via Kirchhoff's Law
- Both data sets can be collected nearly simultaneously
 - Set two data sets for comparison to multiple-spectral libraries
 - Avoids long-distance transport
 - Doesn’t disturb delicate samples
 - External attachments are not needed to acquire reflectance spectra
 - Short wavelength features in reflectance data may aid in spectral identification of low-albedo materials

Hemispherical Reflectance

- IR source inside spectrometer illuminates the sample via a path leading the viewing port on the left side of the spectrometer and exiting the top of the Au-coated LabSphere integrating sphere, which sits over sample holder (Salisbury et al., 1988)
- Spot size is ~1.5 cm diameter
- Reflected signal measured at an external, liquid N₂-cooled mercury cadmium telluride (MCT-A) detector from ~2.5 to 15.4 μm (~600 to 650 cm⁻¹) (see pictures above)
- Sample spectra relative to spectra of diffuse-reflecting gold plates (Johnson et al., 1998)
- Residual atmospheric components can be suppressed using spectrometer software (Figure R1)

Emission

- Configuration identical to that at Arizona State University (Ruff et al., 1997), hot sample is positioned in a double-walled, water-cooled Cu-chamber
- Chamber is maintained at constant T; above calculation of baseline-wavelength
- Spot size selectable from focal point to ~4.5 cm
- Sample energy enters spectrometer via right-hand port and is measured at the internal, TE-cooled DTGS detector from ~5 to 58 μm (~2000 to 200 cm⁻¹) (see pictures above)
- Sample calibration follows two-temperature method of (Ruff et al., 1997)
- Spectra shown here are qualitative; high-precision & accuracy blackbody calibration targets currently are being fabricated, with delivery anticipated Q3 of 2009

Acknowledgements: S. Ruff (ASU) and W. Koepen (UH) contributed significantly to the initial setup of the emission experiment. P. Christiansen & G. Mehl (ASU) provided blueprints and insight. VWI supported by NASA POG & NASA-07145.