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ABSTRACT

We develop an analytical model for the long-term (secular) dynamics of irregular satellites
of the giant planets. The disturbing potential in this modelis represented by a high order
(in semimajor axis, eccentricity and inclination) Legendre expansion. We use a third-order
Hori’s averaging method to eliminate terms in the original equations that are irrelevant for the
long-term dynamics and to construct new second and third-order secular terms. The resulting
secular equations are valid for both direct and retrograde orbits (of any inclinations) and for
eccentricities up to≈ 0.7.

In the present paper we describe the mathematical background of our method and test it in
several applications. The method uses a Hamiltonian formulation of dynamics. The original
Hamiltonian and its high-order secular forms are represented by series that have self-similar
functional forms. The coefficients of these series are calculated by using an algebraic manipu-
lator. This approach allows us to iterate the Hori’s perturbation method to high orders.

To test our method, we(i) calculate the precession frequencies of orbits of the irregular
satellites at Jupiter, and(ii) determine the the dynamical structure of the Kozai resonance. We
show that this resonance occurs at progressively larger (proper) inclinations with increasing
separation of the satellite from the parent planet. These results are compared to those obtained
by numerically integrating the exact equations of motion. Our theory will be particularly useful
for determining the locations and strengths of secular resonances in the space occupied by
distant satellite orbits. Several irregular satellites have been trapped in secular resonances by
some, likely primordial mechanism.
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1. Introduction

Following Burns (1986), we define the irregular satellites of the outer planets as those moons that are
sufficiently far from the planet such that the precession of the orbital plane is dominated by the solar per-
turbation. These bodies are thought to have been captured bythe planet during the last stages of planetary
formation, but the exact mechanism of capture is not completely understood. Dynamically, they are charac-
terized by large planetocentric semimajor axis and high eccentricities. Some irregular satellites have direct
orbits (i.e. same direction as the planet orbits the Sun), but many move in retrograde planetocentric orbits.
In both cases the inclination can also take very high values;up to 40 degrees for direct orbits, and140
degrees for retrograde bodies. Carruba et al. (2002) and Nesvorný et al. (2003) have recently shown that
the orbits with intermediate inclinations (≈60◦-120◦) are unstable due to the effects of the Kozai resonance
(Kozai 1962).

Notwithstanding their large semimajor axes and high eccentricities the irregular satellites have stable
orbits. If chaos exists, it is weak, as in the case of the Jovian satellite Sinope (Saha and Tremaine 1993).
This allows researchers to apply perturbation theories andobtain useful approximations of the long-term
dynamics of irregular satellites via analytic calculations.

Sophisticated analytical theories for satellite motion date from the 19th century, developed mainly to
explain the motion of the Moon (e.g. Delaunay 1860, 1867). For the irregular satellites, however, analytical
perturbation methods are more challenging. First, the orbital characteristics require that the expansion of
the disturbing potential is done to high orders in orbital elements. Second, the complex interaction between
the different degrees of freedom of the dynamical system would require a high-order perturbation method
and the use of algebraic manipulators.

These difficulties have taken their toll: the long-term dynamics of irregular satellites is only partially
understood. When analytical or semi-analytical models areconstructed (e.g. Hénon 1970, Kinoshita and
Nakai 1991, Carruba et al. 2002, Yokoyama et al. 2003), theirresults are more qualitative than quan-
titative. These models have mainly been employed to help interpret numerical results, and not to make
useful predictions about the dynamical behavior of the system. Recently, Cuk and Burns (2004) constructed
an empirical analytical theory, in which ad-hoc high-orderperturbative terms are added to the variational
equations. Comparisons with numerical simulations showedthat the model, although empirical, was very
precise.

In the present paper we develop a new, high-order analyticalmodel for the secular (i.e. long-term)
dynamics of irregular satellites of the outer planets. Although the aims are similar to the work of Cuk and
Burns (2004), the present model is built in a self-consistent form. In Section 2, we present Kaula’s expansion
of the disturbing function for direct and retrograde orbits. In Section 3, we construct the Hamiltonian system.
Our perturbation theory is described in Section 4. The averaging over the mean anomalies and construction
of the secular dynamical system is described in Section 5. Two applications of our secular equations are
discussed. In Section 6, we use the equations to study the Kozai resonance (Kozai 1962). In Section 7,
we calculate the precession frequencies of orbits of the irregular satellites at giant planets. Conclusions are
given in Section 8.
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2. Kaula’s Expansion of the Disturbing Function

We consider the restricted three-body problem comprised ofa small satellite orbiting a planet of mass
m0 and perturbed by the Sun with massm1. Let~r be the instantaneous planetocentric position vector of the
satellite and~r1 that of the Sun. The disturbing potential function of the satellite’s planetocentric Keplerian
orbit is defined as:

R = Gm1

(

1

|~r − ~r1|
− ~r · ~r1

r31

)

, (1)

wherer andr1 are the moduli of~r and ~r1, respectively, andG is the gravitational constant. When the ratio
r/r1 is much smaller than unity (such as in the case of a planetary satellite), it is useful to expandR in
Legendre polynomials:

R =
Gm1

r1

∞
∑

l=2

(

r

r1

)l

Pl(cos θ), (2)

whereθ is the angle between~r and~r1. This expansion can be expressed in terms of the orbital elements of
a satellite (Kaula 1961, 1962). For both prograde and retrograde satellite orbits, this is given by:

R =
Gm1

a1

∞
∑

l=2

αl
l
∑

n=0

(−1)l−nκn
(l − n)!

(l + n)!
(3)

×
l
∑

p,p1=0

Fl,n,p(I)Fl,n,p1(I1)
∞
∑

q,q1=−∞
X l,l−2p
l−2p+q(e)X

−l−1,l−2p1
l−2p1+q1

(e1) cos θ,

where
θ = (l − 2p1 + q1)M1 − (l − 2p + q)M + (l − 2p1)ω1 − (l − 2p)ω + n(Ω1 − Ω), (4)

andα = a/a1. Theκn function appears as a consequence of the passage from exponential to trigono-
metric functions, and it is equal to unity forn = 0 and equal to 2 for all other values of the index. The
satellite’s orbital elements are given by its semimajor axis a, eccentricitye, inclinationI with respect to an
invariant reference system (e.g., the Laplacian plane), mean anomalyM , argument of the pericenterω, and
longitude of the ascending nodeΩ. We use the subscript1 to denote the orbital elements of the Sun in the
planetocentric reference frame.

The functionsFl,n,p(I) are complicated functions of the inclinations. According Murray and Dermott
(1999), these functions are:

Fl,n,p(I) =
(
√
−1)l−n(l + n)!

2lp!(l − p)!

∑

k

(−1)k

(

2l − 2p

k

)(

2p

l − n− k

)

ξ3l−n−2p−2kηn−l+2p+2k, (5)

where the sum is limited tok ∈ [max (0, l − n− 2p),min (l − n, 2l − 2p)]. The inclinations appear in
ξ = cos 1

2I andη = sin 1
2I.

The dependence on the eccentricities is given via the HansencoefficientsXa,b
c , which can be defined

as:

Xa,b
c (e) = e|c−b|

∞
∑

s=0

Y a,b
s+t,s+ue

2s, (6)
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wheret = max(0, c − b), u = max(0, b − c), andY a,b
s+t,s+u are the Newcomb operators which can be

determined via simple recurrence relations (see Hughes 1981, Dermott and Murray 1999).

2.1. Expansion in Complex Variables

It will prove useful to translate the cosines in Eq. (3) to their exponential counterparts and to work with
complex coefficients. We begin introducing new indexes defined by:

i1 = l − 2p1 + q1 ∈ (−∞,∞)

i2 = l − 2p+ q ∈ (−∞,∞)

i3 = l − 2p ∈ [−l, l]
i5 = l − 2p1 ∈ [−l, l]

(7)

where the last two indexes only take odd (even) values ifl is odd (even). We also group the dependence on
the inclination and eccentricity of the Sun inside the coefficients. This is useful to obtain a compressed ver-
sion of the expansion, and introduces no approximations since the planetary orbit will be assumed constant.
With this in mind, we can write

R = Gm1

∞
∑

l=2

al
l
∑

n=0

∞
∑

i1,i2=−∞

l
∑

i3,i5=−l
Al,n,i5(a1, I1, e1) Fl,n,i3(I) X l,i3

i2
(e) cos θ, (8)

where
θ = i1M1 − i2M + i5ω1 − i3ω + n(Ω1 − Ω). (9)

We now pass from thecos θ to exponentials. The main advantage of this transformationis that it allows
us to group inside the new coefficients the dependence withω1,Ω1. After a few algebraic calculations, we
obtain:

R = Gm1

∞
∑

l=2

al
∞
∑

i1,i2=−∞

l
∑

i3,i4=−l
Bl,i4(a1, I1, e1, ω1,Ω1) Fl,−|i4|,i3(I) X l,−i3

−i2 (e) E
√
−1ψ, (10)

whereBl,i4 are the new complex coefficients and we have used the notationEx ≡ expx. The argument of
the periodic terms now read

ψ = i1M1 + i2M + i3ω + i4Ω. (11)

2.2. Separating Prograde and Retrograde Satellite Orbits

FunctionsFl,n,p(I) in equation (5) are valid for any value ofI. However, we note that for low-
inclination prograde orbits (i.e.I ≈ 0), we have thatη ≪ 1 andξ ≈ 1. Conversely, for low-inclination
retrograde orbits (i.e.I ≈ π), we have thatξ ≪ 1 andη ≈ 1. This property allows us to expandFl,n,p(I) as
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power series ofξ or η depending on whether the satellite is retrograde or prograde. For example, in the case
of retrograde orbits, and for any non-negative integersj, k, we can write:

ξjηk = ξj(1 − ξ2)k/2 =

∞
∑

i=0

C
(k)
i ξ2i+j (12)

where the coefficients have the following recurrence relation:

C
(k)
0 = 1 ; C

(k)
i = −(k − i+ 1)

k
C

(k)
i−1. (13)

This series is valid in the intervalI ∈ [π/2, π]. For direct orbits, the expressions above acquire the form:

ξjηk = ηk(1 − η2)j/2 =
∞
∑

i=0

C
(j)
i η2i+k (14)

with the same coefficientsC(j)
i given by (13). This series is valid forI ∈ [0, π/2]. In the case of vertical

orbits (i.e.I = π/2) both expressions can be used.

Introducing (12) into (5) we can now determine new constant coefficientsgl,n,p,k and write for retro-
grade orbits:

Fl,n,p(I) =
∞
∑

k=0

g l,n,p,k ξ
k. (15)

The same procedure can also be undertaken for direct orbits,yielding a power series inη.

Finally, since most irregular satellites have eccentricities below the limitec ≃ 0.6667, we can use the
expansion of Hansen coefficients in power series of the eccentricities. Thus, we can write:

Xa,b
c (e) =

∞
∑

j=0

xa,b,c,j e
j, (16)

where the expressions forxa,b,c,j can be easily obtained from the Newcomb operators. Note thatall values
are zero forj < |c− b|; however, we will keep the general form for simplicity.

Introducing all these changes into the expression forR, for retrograde orbits we obtain:

R = Gm1

∞
∑

l=2

∞
∑

j,k=0

∞
∑

i1,i2=−∞

l
∑

i3,i4=−l
Rl,j,k,i1,i2,i3,i4 alejξk E

√
−1(i1M1+i2M+i3ω+i4Ω). (17)

whereRl,j,k,i1,i2,i3,i4 are the new complex coefficients. In the case of direct orbits, the power series inξ is
replaced by one inη.

As a final comment, it is important to keep in mind certain properties of the Legendre expansion of the
disturbing function. Compared to the Laplace version, Kaula’s series has the advantage of being convergent
for eccentricities belowec ≃ 0.6667 (see Wintner 1941) and all values of the inclinations. The value of ec
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is actually a function ofα (see Ferraz-Mello 1994), but it is practically unchanged for all α < 0.1. If Bessel
functions are used instead of Newcomb operators, the resulting expressions could be used even in the case
of eccentricities close to unity. However, the Legendre expansion has two drawbacks. On one hand, its rate
of convergence is very slow as function ofα; thus it is usually applied only to those cases where the ratio
of semimajor axes is very small. Secondly, the literal expression ofR is very complex and only a few terms
are usually included in models.

3. Hamiltonian Formulation

The Hamiltonian function for the dynamics of a satellite, inthe extended phase-space, can be written
as:

F = − µ2

2L2
+ n1Λ −R(L,G,H,M,ω,Ω) (18)

whereµ = Gm0 andG is the gravitational constant . The mean-motion of the planet is denoted byn1, and
Λ represents the canonical conjugate of time. The Delaunay canonical variables are written in terms of the
orbital elements of the satellite as:

L =
√
µa

G = L
√

1 − e2 (19)

H = G cos (I) = G(2ξ2 − 1) = G(1 − 2η2).

However, we will not explicitly introduce the transformation (e, ξ) → (G,H) into (17) since it would lead
to unnecessary complications. We will then simply write theHamiltonian as:

F = n1Λ +
∑

i,j,k

∑

l1,...,l4

fi,j,k,l1,...,l4 Liejξk E
√
−1(l1M1+l2M+l3ω+l4Ω). (20)

Note that the first term in (18) has been included into the sum.This is an example of what is sometimes
referred to as aPoisson series(e.g. Henrard 1989), and it is characterized by a power series in the subset
(L, e, ξ) and a Fourier series in the angles.

3.1. Operations on the Hamiltonian Expansion

In order to use Eq. (20) in a perturbation theory and construct a secular model for the evolution of the
irregular satellites, we must be able to perform operationson the series, such as differentiation with respect
to the canonical variables. The angles pose no problem at all. For example, the derivative ofF respect toM
will yield a series of the same type as (20) with new coefficients:

f
(M)
i,j,k,l1,...,l4

=
√
−1 l1 fi,j,k,l1,...,l4, (21)

and similar expressions are also found for the remaining angles.
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Derivatives with respect to the canonical momenta are more difficult, and constitute a common problem
in this type of analytical work. While the perturbation equations are written in terms of partial derivatives
with respect to the canonical momentaL,G,H, our Hamiltonian (20) is written inL, e, ξ. If the expression
of R is not restricted to a small number of terms, the transformation R(L, e, ξ) → R(L,G,H) would
yield very complicated expressions and we lose the originalPoisson form. Any posterior differentiation
or integration will complicate things even further, up to a point where we would necessarily have to adopt
approximations which would limit the validity of the model.

Using Eq. (20) we can write for retrograde orbits:

∂(Liejξk)

∂L
= (i− j) Li−1ejξk + j Li−1ej−2ξk

∂(Liejξk)

∂G
= −

∞
∑

n=0

j C(1/2)
n Li−1ej+2n−2ξk −

∞
∑

n=0

k

2
C(−1/2)
n Li−1ej+2nξk (22)

+

∞
∑

n=0

k

4
C(−1/2)
n Li−1ej+2nξk−2

∂(Liejξk)

∂H
=

∞
∑

n=0

k

4
C(−1/2)
n Li−1ej+2nξk−2

whereC(1/2)
n andC(−1/2)

n are given by equations (13). For direct orbits, the derivatives are given by the
following expressions:

∂(Liejηk)

∂L
= (i− j) Li−1ejηk + j Li−1ej−2ηk (23)

∂(Liejηk)

∂G
= −

∞
∑

n=0

j C(1/2)
n aiej+2n−2ηk −

∞
∑

n=0

k

2
C(−1/2)
n Li−1ej+2nηk +

∞
∑

n=0

k

4
C(−1/2)
n Li−1ej+2nηk−2

∂(Liejηk)

∂H
= −

∞
∑

n=0

k

4
C(−1/2)
n Li−1ej+2nηk−2.

Notice that these expressions are singular for circular and/or planar orbits. Introducing these derivatives into
our Hamiltonian, for retrograde orbits we obtain:

∂F

∂L
=

∑

i,j,k

∑

l1,...,l4

f
(L)
i,j,k,l1,...,l4

Llejξk E
√
−1(l1M1+l2M+l3ω+l4Ω)

∂F

∂G
=

∑

i,j,k

∑

l1,...,l4

f
(G)
i,j,k,l1,...,l4

Llejξk E
√
−1(l1M1+l2M+l3ω+l4Ω) (24)

∂F

∂H
=

∑

i,j,k

∑

l1,...,l4

f
(H)
i,j,k,l1,...,l4

Llejξk E
√
−1(l1M1+l2M+l3ω+l4Ω)

where the new coefficients are given by

f
(L)
i,j,k,l1,...,l4

= (i− j + 1) fi+1,j,k,l1,...,l4 + (j + 2) fi+1,j+2,k,l1,...,l4
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f
(G)
i,j,k,l1,...,l4

= −
nmax+1
∑

n=0

(j − 2n+ 2) C(1/2)
n fi+1,j−2n+2,k,l1,...,l4 −

nmax
∑

n=0

k

2
C(−1/2)
n fi+1,j−2n,k,l1,...,l4

+

nmax
∑

n=0

(k + 2)

4
C(−1/2)
n fi+1,j−2n,k+2,l1,...,l4 (25)

f
(H)
i,j,k,l1,...,l4

=

nmax
∑

n=0

(k + 2)

4
C(−1/2)
n fi+1,j−2n,k+2,l1,...,l4

with nmax = int(j/2). The expressions for direct orbits are analogous. The only difference is a change of
sign forf (H)

i,j,k,l1,...,l4
.

The main importance of this procedure is that it allows us to find a self-similar expression for all
the operations involved in the perturbation equations. In other words, the original Hamiltonian and its
derivatives, integrals, products, etc., have the same functional form. The corresponding series only differ in
values of the the coefficients, which are not dependent on theorbital elements of the satellite. The advantage
of this method is that it allows us to iterate the Hori’s perturbation theory to a high order.

3.2. Fundamental Frequencies

As a first application of method, we determine the fundamental frequencies in each canonical angle.
We restrictF to its truncated formF ′, defined as all those terms that do not depend explicitly on the set
(M,ω,Ω). From Hamilton’s equations we can write:

νL ≡ Ṁ =
∂F ′

∂L
νΛ ≡ Ṁ1 =

∂F ′

∂Λ
(26)

νG ≡ ω̇ =
∂F ′

∂G
νH ≡ Ω̇ =

∂F ′

∂H

whereF ′ includes only those terms inF that satisfyl1 = l2 = l3 = l4 = 0. It can easily be seen that
νΛ = n1 is simply the mean-motion of the planet,νL is the orbital frequency of the satellite, andνG, νH are
the frequencies of variation of the argument of pericenter and ascending node, respectively. For example,
νG is given by:

νG =
∑

i,j,k

f
(G)
i,j,k,0,0,0,0 Liejξk (27)

and similar expressions hold to the other frequencies.

The continuous curves in Figure 1 represent the values the frequencies, as function of the semimajor
axis, for Jovian retrograde satellites withe = 0.3 andI = 170 deg. AlthoughνL andνΛ are much larger
thanνG andνH for small values of the semimajor axis, for distant moons allthese frequencies are roughly
of the same order. In particular, fora = 0.22 AU (corresponding to≈ 0.7RHill), the orbital frequency
of the satellite is only about 3 times larger thanνΛ, and this last value is less than twiceνG and only
about four timesνH . Thus, contrary to what is found other non-resonant three-body systems (for example,
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Fig. 1.— Fundamental frequencies of each canonical angle asa function of semimajor axis of the satellite
that hase = 0.3 andI = 170 deg. The satellite orbits a Jupiter-like planet with massm0 = 10−3m1 that
was placed on the current osculating orbit of Jupiter. Continuous curves represent the values obtained with
the complete truncated secular HamiltonianF ′. Broken curves show results determined with our KernelF0

(see equations (29)-(30)).

in the asteroid belt), for the irregular satellites we find a significant region of the phase space where all
the fundamental frequencies are roughly of the same order, and the separation between “short-period” and
“long-period” degrees of freedom becomes blurred. As a consequence, seemingly unimportant terms such
as the evection (Delaunay, 1860, 1867) have important contributions in the dynamics of distant planetary
satellites.

4. Perturbation Theory

To study the secular dynamics of the irregular satellites, it is usual practice to eliminate all terms which
depend explicitly on both mean anomalies. This is performedwith an averaging process obtained from
the application of a chosen perturbation theory. Analytical works (such as Saha and Tremaine 1993) usually
adopt a first-order averaging in the mean anomalies, which simply corresponds a straightforward elimination
of all periodic terms inM,M1. However, it is well known that some of the periodic terms eliminated by
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this approximation (such as, e.g., the evection term) have significant effects on the long-term evolution of
distant satellites. In Lunar theories, the importance of such long-period terms has been recognized since the
times of Delaunay (see also Touma and Wisdom 1998), and showsthat it is necessary to go beyond a first-
order averaging to have an adequate representation of the secular dynamics. In recent years, a number of
second-order secular theories have appeared in the literature, for both the restricted and planetary three-body
problems (e.g. Milani and Knežević 1994, Lee and Peale 2003, Cuk and Burns 2004).

Most of these second-order models were based on the canonical theories of Von Zeipel (1916) or Hori
(1966), although sometimes a simpler variation of constants was adopted (Cuk and Burns 2004). In all cases,
however, the application of the perturbation theory followed three main steps:(i) The ratio of semimajor
axesα or, alternatively, the ratio of mean-motionsn1/n was usually chosen as the “small parameter” of the
perturbation, around which the theory was constructed. Thezero-order term corresponds to the kernel.(ii)
The two-body contribution (including theΛ term) was chosen as the kernel (e.g. unperturbed Hamiltonian
function F0). The unperturbed system was thus degenerate and the fundamental frequenciesνG andνH
are zero. An expansion of the disturbing function up to orderα2 yielded what is called the quadrupole
approximation, while terms up toα3 give the so-called octupole approximation. The evection term appears
in α3-terms.(iii) As an initial step in the model, a first order averaging was initially performed on the mean
anomaly of the satellite (i.e. elimination ofM ). The second-order theory was only constructed for the
remaining three-degree of freedom system.

The choice ofF0 = −µ2/2L2 + n1Λ as the kernel has historical reasons and is a very good approxi-
mation for the secular dynamics of main belt asteroids (e.g.Milani and Knežević 1994), Lunar theories (e.g.
Delaunay 18860, 1861, Touma and Wisdom 1998), or regular satellites of the outer planets. In the example
of the asteroids,νG andνH are typically several orders of magnitude smaller than the orbital frequencies of
the bodies. Thus considering these quantities equal to zerois well justified as a first approximation. How-
ever, for irregular satellites of the Jovian planets, we have seen in Figure 1 that all frequencies may acquire
values of similar magnitudes. In such a case, the choice of the two-body Hamiltonian as the kernel is no
longer a good option. Similarly, first-order averaging overM is also not a good approximation. Once again,
this assumes very different timescales for the variation ofthe different degrees of freedom, a characteristic
which is not necessarily correct for irregular satellites.

We thus need to define a new unperturbed Hamiltonian and develop a new perturbation approach.
To define the new unperturbed Hamiltonian, we incorporate into F0 the most important terms ofR that
contribute toνG andνH . The more terms we include, the better our approximation will be. However, these
new terms must not depend on the angles, since we still wish tomaintain the integrability ofF0. We will
then divide the complete HamiltonianF as the sum of a (new) unperturbed partF0 plus a perturbationF1:

F (L,Λ, G,H,M,M1 , ω,Ω) = F0(L,Λ, G,H) + εF1(L,Λ, G,H,M,M1 , ω,Ω) (28)

where now

F0(L,Λ, G,H) = − µ2

2L2
+ n1Λ −R0(L,Λ, G,H) (29)

F1(L,Λ, G,H,M,M1 , ω,Ω) = −R1(L,Λ, G,H,M,M1 , ω,Ω)
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andR0 contains the lowest-degree terms (in semimajor axis, eccentricity and inclination) of the disturbing
function which do not depend explicitly on any of the angles.Explicitly, we will choose:

−R0(L,Λ, G,H) = f4,0,0,0,0,0,0 L
4 + f4,2,0,0,0,0,0 L

4e2 + f4,0,2,0,0,0,0 L
4ξ2. (30)

and the perturbationF1 (i.e.R1) contains the remaining terms. Notice that the “small parameter” ε invoked
to separateF1 from F0 is merely formal, and the real dynamical system correspondsto ε = 1. The actual
small parameter is given by(a/a1)

2, which is the difference between the lowest-order terms inF0 andF1.
However, some terms of order(a/a1)

2 have been brought to the Kernel, and higher order of the semimajor
axes ratio also inhabitF1. For this reason, we(a/a1)

2 is not actually a separator between Kernel and
perturbation, and we introduce the formal parameterε to play this role. It will also help us keep track of the
different order in Hori’s perturbation series.

The fundamental frequencies obtained from the KernelF0 are given by:

νL0 =
∂F0

∂L
= µ2L−3 + (4f4,0,0,0,0,0,0 + 2f4,2,0,0,0,0,0) L

3 + 2f4,2,0,0,0,0,0 L
3e2 + 4f4,0,2,0,0,0,0 L

3ξ2

νΛ =
∂F0

∂Λ
= n1 (31)

νG0 =
∂F0

∂G
= −2f4,2,0,0,0,0,0 L

3(1 − e2)1/2 +
1

2
f4,0,2,0,0,0,0 L

3(1 − 2ξ2)(1 − e2)−1/2

νH0 =
∂F0

∂H
= ±1

2
f4,0,2,0,0,0,0 L

3(1 − e2)−1/2

In Figure 1 we present two different estimations of the fundamental frequencies. Broken lines correspond to
the values obtained from our newF0, while continuous curves show the results from a first-orderaveraging
of the complete integrable Hamiltonian function, including terms up to fifth-degree in(α, e, ξ). The good
qualitative agreement between both sets of curves makes it unnecessary to consider additional terms in the
Kernel.

We can now apply Hori’s perturbation method to eliminate themean anomaliesM,M1 from our Hamil-
tonian. The idea then is to search for a canonical transformation, defined by a Lie-type generating function

B =

∞
∑

i=1

εiBi(L
∗,Λ∗, G∗,H∗,M∗,M∗

1 , ω
∗,Ω∗) (32)

to new (star) variables such that the new Hamiltonian function

F ∗ =
∞
∑

i=0

εiFi(L
∗,Λ∗, G∗,H∗, ω∗,Ω∗) (33)

is independent of the pairM∗,M∗
1 . In doing this, we will have an integrable approximation of the secular

system.

Up to third order inε, the relationship between the new secular Hamiltonian, thegenerating function
and the old Hamiltonian, is given by:

F ∗
0 = F0
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F ∗
1 = F1 + {F0, B1}

F ∗
2 = F2 + {F0, B2} + {F1, B1} +

1

2
{{F0, B1}, B1} (34)

F ∗
3 = F3 + {F0, B3} + {F1, B2} + {F2, B1} +

1

2
{{F1, B1}, B1}

+
1

2
{{F0, B1}, B2} +

1

2
{{F0, B2}, B1} +

1

6
{{{F0, B1}, B1}, B1}

...

where both the right and left hand terms must be written in thenew variables, and{ , } is the Poisson
bracket. For two arbitrary analytical functionsg andh, it is given by:

{g, h} =

(

∂f

∂M∗
∂g

∂L∗ − ∂g

∂M∗
∂f

∂L∗

)

+

(

∂f

∂M∗
1

∂g

∂Λ∗ − ∂g

∂M∗
1

∂f

∂Λ∗

)

+ (35)

+

(

∂f

∂ω∗
∂g

∂G∗ − ∂g

∂ω∗
∂f

∂G∗

)

+

(

∂f

∂Ω∗
∂g

∂H∗ − ∂g

∂Ω∗
∂f

∂H∗

)

.

The first (i.e. zero order) equation is trivial; the rest contain two unknowns: the generating functionBi and
the new HamiltonianF ∗

i . ChoosingF ∗
i to be independent of the mean anomalies, we can then use each

equation to determine correspondingBi. This procedure is detailed in the following section.

4.1. The Generating Function

Even though the algebraic system (34) contains an infinite number of equations, each can be solved in
terms of the previous orders. For the first onwards, we can write each equation as:

F ∗
n = {F0, Bn} + Φn(F0, . . . , Fn, B1, Bn−1), (36)

where functionΦn is assumed to be known from the solution of the previous equations. At each step, we
will determineBn such thatF ∗

n does not depend explicitly on any angle. We begin by separating Φn into
two parts:

Φn = 〈Φn〉M,M1
+ [Φn]M,M1

(37)

where the first sum includes all terms that do not contain the mean anomalies explicitly, and the second sum
contains the remaining terms. Introducing this expressioninto (36), we can solve for bothF ∗

n andBn simply
choosing:

F ∗
n = 〈Φn〉M,M1

(38)

−{F0, Bn} = [Φn]M,M1
.

Although the expression for the new Hamiltonian is explicit, the generating function needs further work.
SinceF0(L

∗,Λ∗, G∗,H∗) is only dependent on the momenta, the Poisson bracket takes the form:

−{F0, Bn} = νL
∂Bn
∂M∗ + νΛ

∂Bn
∂M∗

1

+ νG
∂Bn
∂ω∗ + νH

∂Bn
∂Ω∗ . (39)
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Assuming thatBn (and thereforeΦn) have a Poisson form, we can write:

−{F0, Bn} =
√
−1
∑

i,j,k

∑

l1,...,l4

B
(n)
i,j,k,l1,...,l4

(l1νL + l2νΛ + l3νG + l4νH) L∗ie∗jξ∗k (40)

× E
√
−1(l1M∗

1
+l2M∗+l3ω∗+l4Ω∗),

wheree∗ andξ∗ are defined from the canonicalG∗,H∗ simply inverting the transformations (20). Therefore,
we finally obtain from (39):

Bn =
∑

i,j,k

∑

l1,...,l4

−
√
−1 Φ

(n)
i,j,k,l1,...,l4

l1νL + l2νΛ + l3νG + l4νH
L∗ie∗jξ∗k E

√
−1(l1M∗

1
+l2M∗+l3ω∗+l4Ω∗). (41)

From our series expansions for the frequencies, we can rewrite the denominator as:

Dl1,l2,l3,l4(L
∗) ≡ l1νL + l2νΛ + l3νG + l4νH = l2 n2 + l1 µ L

∗−3 + d2 L
∗3 (42)

where the coefficientd2 is given by:

d2 = 4l1 f4,0,0,0,0,0,0 + 2(l1 − l3)f4,2,0,0,0,0,0 +
1

2
(l3 + l4)f4,0,2,0,0,0,0. (43)

Thus, we can rewrite the generating function as:

Bn =
∑

i,j,k

∑

l1,...,l4

−
√
−1 Φ

(n)
i,j,k,l1,...,l4

Dl1,l2,l3,l4(L
∗)

L∗ie∗jξ∗k E
√
−1(l1M∗

1
+l2M∗+l3ω∗+l4Ω∗). (44)

The dependence ofDl1,l2,l3,l4 with the semimajor axis is not in the Poisson series form. This poses a
problem because we wish to retain the self-similarity of allexpansions to simplify the calculations of the
perturbations series to high orders. To deal with this problem, we expand the inverse of the denominator via
a local Taylor series in(L∗, e∗, ξ∗) around a reference value(L∗

0, 0, 0). Concentrating just on the dependence
in L∗ (the expansions ine∗, ξ∗ are analogous) we can write:

1

Dl1,l2,l3,l4(L
∗)

= D
(0)
l1,l2,l3,l4

+D
(1)
l1,l2,l3,l4

L∗ +D
(2)
l1,l2,l3,l4

L∗2 + . . . (45)

where the coefficients are given by:

D
(0)
l1,l2,l3,l4

= D−1
0 +D−2

0 L∗
0

(

dD

dL∗

)

L∗
0

− 1

2
D−2

0 L∗
0
2

(

d2D

dL∗2

)

L∗
0

+D−3
0 L∗

0
2

(

dD

dL∗

)2

L∗
0

D
(1)
l1,l2,l3,l4

= −D−2
0

(

dD

dL∗

)

L∗
0

+D−2
0 L∗

0

(

d2D

dL∗2

)

L∗
0

− 2D−3
0 L∗

0

(

dD

dL∗

)2

L∗
0

(46)

D
(2)
l1,l2,l3,l4

=
1

2
D−2

0

(

d2D

dL∗2

)

L∗
0

+D−3
0

(

dD

dL∗

)2

L∗
0

...
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Fig. 2.— Comparison between the inverse ofDl1,l2,l3,l4(L) (continuous lines) and the second-order Taylor
expansion in(L, e, ξ) (broken lines), as a function of the semimajor axis. The reference valueL0 was
calculated consideringa0 = 0.1 AU. (a) l1 = 1, l2 = 1, l3 = 1, l4 = 1. (b) l1 = 1, l2 = −1, l3 = 4,
l4 = −4. In both cases, the eccentricity was chosene = 0.2 and the inclinationI = 10◦. Note that the
approximation is good locally neara0 = 0.1 AU.

with D0 = Dl1,l2,l3,l4(L
∗
0), and the derivatives are also evaluated at this value. Introducing the expansion

(45) intoBn, we finally obtain the generating function as:

Bn =
∑

i,j,k

∑

l1,...,l4

B
(n)
i,j,k,l1,...,l4

L∗ie∗jξ∗k E
√
−1(l1M∗

1
+l2M∗+l3ω∗+l4Ω∗), (47)

where the new coefficients, up to second degree in(L∗ − L∗
0), are given by:

B
(n)
i,j,k,l1,...,l4

= −
√
−1

(

Φ
(n)
i,j,k,l1,...,l4

D
(0)
l1,l2,l3,l4

+ Φ
(n)
i−1,j,k,l1,...,l4

D
(1)
l1,l2,l3,l4

+ Φ
(n)
i−2,j,k,l1,...,l4

D
(2)
l1,l2,l3,l4

)

.

(48)
An example of the precision of this approximation of the denominator of the generating function is shown
in Figure 2.

4.2. The Second-Order Secular Hamiltonian

We now have all the tools to determine the secular functionF ∗(L∗,Λ∗, G∗,H∗) up to any given order in
ε. In this subsection we will show the explicit expressions for the second-order HamiltonianF ∗

0 +F ∗
1 +F ∗

2 .
It has already been mentioned that the zero-order functionF ∗

0 is equal to the original kernelF0, simply
replacing the old variables by the new. For the first order, equations (35) and (37) show thatΦ1 = F1, so
from (36) and (41) we have:

F ∗
1 =

∑

i,j,k

∑

l3,l4

fi,j,k,0,0,l3,l4 L∗ie∗jξ∗kE
√
−1(l3ω∗+l4Ω∗) (49)
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B1 =
∑

i,j,k

∑

l1,...,l4

B
(1)
i,j,k,l1,...,l4

L∗ie∗jξ∗k E
√
−1(l1M∗

1
+l2M∗+l3ω∗+l4Ω∗),

For the second order, the expression become slightly more complicated:

Φ2 = F2 + {F1, B1} +
1

2
{{F0, B1}, B1}. (50)

However, we do have two advantages. First, due to our choice of perturbation, we have thatF2 ≡ 0. Second,
from the first-order Hori equation, it can be seen that{F0, B1} = F ∗

1 − F1. Introducing both into (50), we
obtain:

Φ2 =
1

2
{(F ∗

1 + F1), B1}. (51)

To calculateΦ2 we have to differentiateB1 with respect to the momenta. This operation is straightfor-
ward and analogous to similar derivatives performed in Section 3.1, since we have kept invariant the Poisson
form of each function. Finally, the second-order Hamiltonian is simply:

F ∗
2 = 〈Φ2〉. (52)

4.3. The Third-Order Secular Hamiltonian

As we shall see in our comparisons with numerical integrations, a second-order theory is not sufficient
to obtain a precise model for secular dynamics. Therefore wemust calculate the third-order contributions.
The expression forF ∗

3 (see equation (35)) is given by:

F ∗
3 = {F0, B3} + Φ3(F0, . . . , F3, B1, B2), (53)

where:

Φ3 = F3 + {F2, B1} + {F1, B2} +
1

2
{{F1, B1}, B1} (54)

+
1

2
{{F0, B1}, B2} +

1

2
{{F0, B2}, B1} +

1

6
{{{F0, B1}, B1}, B1}.

Once again, we are able to use some simplifications. First, wehave definedF2 = F3 = 0, thus the first two
sums are zero. Second, from the Hori equations of first two orders, we know that:

{F0, B1} = F ∗
1 − F1 (55)

{F0, B2} = F ∗
2 − 1

2
{(F ∗

1 + F1), B1}.

Thus, the expression forΦ3 simplifies to:

Φ3 =
1

2
{(F ∗

1 + F1), B2} +
1

12
{{(F1 − F ∗

1 ), B1}, B1} +
1

2
{F ∗

2 , B1}. (56)
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Finally, since we are only interested in the secular third-order Hamiltonian, and we will not extend our
model beyond this order, we only need the averaged values ofΦ3. Thus,

F ∗
3 =

1

2
〈{F1, B2}〉 +

1

12
〈{{(F1 − F ∗

1 ), B1}, B1}〉. (57)

Although we discuss here the Hori series truncated at order 3, our procedure allows a straightforward exten-
sion to higher orders. The self-similarity of the expressions allow this extension with no difficulty, except
limits dictated by the computer resources (e.g. CPU and RAM restrictions).

5. The Secular Hamiltonian

We obtain a new Hamiltonian functionF ∗ = F ∗
0 + F ∗

1 + F ∗
2 + F ∗

3 as a function of the new variables
(L∗, G∗,H∗, ω∗,Ω∗). We call these “mean elements”, since they are averaged overthe mean anomalies.
Since the secular Hamiltonian does not depend explicitly onM , the quantityL∗ is a constant of motion of
the complete system, and gives theproper semimajor axis. The relationship between the starred variables
and the original elements is also given by Hori’s transformation. DenotingB = B1 + B2 as the complete
(up to second-order) generating function, we can write:

L = L∗ +
∂B

∂M∗ ; M = M∗ − ∂B

∂L∗

G = G∗ +
∂B

∂ω∗ ; ω = ω∗ − ∂B

∂G∗ (58)

H = H∗ +
∂B

∂Ω∗ ; Ω = Ω∗ − ∂B

∂H∗ ,

where it is important to remember thatB is a function of the starred variables. Thus, if we wish to determine
the mean elements from their osculating counterparts, equations (58) must be solved iteratively.

We can now write the the equations of motion for the satellite. We have two choices: either use the
Lagrange planetary equations in orbital elements, or the Hamilton equations. Both are equivalent, although
the latter have the advantage of allowing further use of perturbation methods.

Recalling thatL∗ is a constant of motion, and thus a parameter of the Hamiltonian, we have a two
degree of freedom system characterized byF ∗ = F ∗(G∗,H∗, ω∗,Ω∗;L∗). The equations of motion are:

dG∗

dt
=
∂F ∗

∂ω∗ ;
dω∗

dt
= −∂F

∗

∂G∗ (59)

dH∗

dt
=
∂F ∗

∂Ω∗ ;
dΩ∗

dt
= − ∂F ∗

∂H∗ ,

where the Hamiltonian is given by:

F ∗ =
∑

i,j,k

∑

l3,l4

Si,j,k,l3,l4L
∗ie∗jξ∗kE

√
−1(l3ω∗+l4Ω∗). (60)

This system can be solved numerically, and its results compared with an exact simulation of Newton’s
equations. We have chosen a fictitious Jovian satellite withinitial conditions given bya = 0.15 AU,
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Fig. 3.— Evolution of a fictitious Jovian satellite with the initial orbit defined bya = 0.15 AU, e = 0.37

andI = 150 degrees. All initial angular variables were taken equal to zero. The satellite orbits Jupiter-mass
planet is assumed to move in a circular orbit around the Sun at5.2 AU. Grey dots correspond to the results of
an exact numerical simulation (including short-period terms), while continuous black lines show the secular
evolution according to our model equations (59).

e = 0.37, I = 150◦ andM = M1 = ω = Ω = 0. Jupiter is assumed to move in a circular orbit. Figure 3
shows, in gray dots, the orbital evolution of this body as determined with an exact numerical simulation. In
order to apply our secular model, we used the Hori’s transformation to pass from the osculating elements to
the mean variables. Once the starred variables were determined, we then solved equations (59) numerically.
The results are shown in the figure with black continuous lines. We can see a very good agreement with the
exact evolution, even though we have considered a highly eccentric and inclined retrograde orbit with large
semimajor axis. The periods of oscillation of both angles are also well reproduced. Therefore, our secular
Hamiltonian (60) contains all important features of the secular dynamics.
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Fig. 4.— Level curves ofFL = const. whereFL defined in (61), for semimajor axisa = 0.1 AU and
six different values ofH. Each is characterized by the maximum value of the inclination (i.e. fore = 0).
Perturber is Jupiter in a circular orbit with current mass and semimajor axis.

6. The Lidov-Kozai Hamiltonian

The secular system can be further simplified by averaging over the longitude of the node. This can be
performed in the same manner as the previous averaging, although we have found that it is usually not nec-
essary to go beyond the first order. We thus search for a new canonical transformation(G∗,H∗, ω∗,Ω∗) →
(G∗∗,H∗∗, ω∗∗,Ω∗∗) such that the new Hamiltonian (which we will denote byFL) does not depend explic-
itly on Ω∗∗. This resulting function is given by:

FL(G,ω;L,H) =
∑

i,j,l

Ki,l(L,H)eiξjE
√
−1lω (61)

where, for simplicity of notation, we have eliminated the double stars in all the variable. Note thatFL(G,ω;L,H)

is a single degree of freedom system, and bothL andH are constant of motions. From equations (20) we
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Fig. 5.— Fixed points ofFL for retrograde orbits, as function of the maximum eccentricity, and fora = 0.1

AU. Stable solutions are shown by continuous lines, while broken lines correspond to unstable fixed points.

see that:
H

L
=
√

1 − e2 cos I. (62)

Since the left hand side is constant throughout the orbital evolution, this means that both the eccentricity and
inclination are coupled. As the orbit becomes more inclined, its eccentricity decreases, ande will reach its
maximum value for the minimum value ofI (or π − I for retrograde orbits).

FL is a high-order version (inε) of what is usually referred to as the “Kozai Hamiltonian”1. The
first-order approximation has been extensively studied in the past, both for solar system bodies (e.g. Kozai
1962, Thomas and Morbidelli 1996) and planetary satellites(e.g. Lidov 1961, Nesvorný et al. 2003). Figure
4 shows the level curves of constant values ofFL for retrograde orbits and four different values ofH. Each
plot is characterized by the value of the maximum value of theinclination (i.e. Imax), which is given by
equation (62) fore = 0:

Imax = arccos

(

H

L

)

. (63)

Jupiter was chosen as the perturber, with current mass and semimajor axis but in a circular orbit.

1As recalled recently in Michtchenko et al. (2005), the dynamical phenomena associated to this one degree-of-freedom system,
including the so called Kozai resonance, was first discovered by Lidov (1961)
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Fig. 6.— Bifurcation value of the proper inclination for theLidov-Kozai Hamiltonian, as function of the
proper semimajor axis and initial circular orbits. Result for retrograde motion are presented on the left-
hand plot, while those for direct orbits are shown on the right-hand graph. Dotted lines are results from the
“classical” low-order Lidov-Kozai Hamiltonian. Continuous lines show results from our model. Full circles
correspond to data from numerical integrations.

We can see the well-known structure of the phase plane. For low values ofemax (i.e. low eccentricities
and quasi-planar orbits) the level curves are distorted ellipses around the center, which corresponds to a
stable fixed point. Foremax ≈ 0.58, the origin becomes unstable and bifurcates into two new stable points
with ω = ±90◦. A separatrix appears, dividing the phase plane into a region of circulatory motion (now
restricted to high values ofe sinω) and two libration islands. This structure is known as the Kozai resonance.

Figure 5 shows the fixed points of the Hamiltonian (retrograde orbits), as well as their stability as
function ofemax. Stable solutions are shown by continuous lines, while unstable fixed points are identified
by broken curves. The bifurcation is clearly visible foremax ≈ 0.58, and the eccentricity of the center of
the Lidov-Kozai resonance tends towards unity with the value ofemax.

The “classical” expression for the Lidov-Kozai found in many papers (e.g. Kinoshita and Nakai 1999,
Carruba et al. 2002, Nesvorný et al. 2003) is given by:

K =
m0n

2
1a

2
1

16(m0 +m1)

(

(2 + 3e21)(3 cos2 I1 − 1) + 15e21 sin2 I1 cos 2ω1

)

, (64)

and is obtained retaining only the lowest order terms in semimajor axis, eccentricity and inclination, and
performing the averaging over the mean anomalies only to first order. The bifurcation points of this Hamil-
tonian are independent of the semimajor axis, and directionof the orbital motion of the satellite. However,
the empirical model of Cuk and Burns (2004) shows that higher-order perturbations introduce a dependence
of emax with the semimajor axis.

Figure 6 shows the application of our model. Result for retrograde orbits are presented on the left-
hand plot, while those for direct orbits are shown on the right-hand graph. Both show the corresponding
values of the inclination for which the libration zone first appears for initially circular orbits. Dotted lines
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are results from the “classical” low-order Lidov-Kozai Hamiltonian. Continuous lines show results from
our model. Full circles correspond to data from numerical integrations. Even for large semimajor axes the
overall agreement is very good, with differences which rarely exceed∼ 0.5 degrees. However, we do note
a tendency for the model to underestimate (overestimate) the numerical values by for retrograde (direct)
motion.

7. Secular Frequencies of Fictitious Satellites

A very important application of a secular theory for the irregular satellites of the outer planets involves
the determination of the frequencies of oscillation of boththe argument of pericenter (i.e.νG) and the
longitude of the ascending node (i.e.νH). Having expression for these quantities (explicit or otherwise)
as function of the initial orbital elements, we can then search for the regions of secular resonances with
the fundamental frequencies of the outer planets and, in a future work, construct a model for each of these
secular commensurabilities.

We have developed two different methods for the calculationof the secular frequencies. Each is detailed
below:

• Full Averaging: The elimination of the angular variables described in Section 4 is extended to also
include the secular anglesω andΩ. This direct elimination of the argument of pericenter is equivalent
to assuming that the origin(G cos ω,G sinω) is an elliptic fixed point and, therefore, the angleω
circulates. In other words, we assume that we are far from theLidov-Kozai resonance. Since the final
expression depends only on the momenta, the temporal evolution of the starred variables are given by:

L∗(t) = const. ; M∗(t) = νL∗t+M∗
0 where νL∗ =

∂F ∗

∂L∗ = const.

G∗(t) = const. ; ω∗(t) = νG∗t+ ω∗
0 where νG∗ =

∂F ∗

∂G∗ = const. (65)

H∗(t) = const. ; Ω∗(t) = νH∗t+ Ω∗
0 where νH∗ =

∂F ∗

∂H∗ = const.

and with the total HamiltonianF ∗ = F ∗
0 + F ∗

1 + F ∗
2 + F ∗

3 . It is clear that(L∗, G∗,H∗) are integrals
of motion of this approximate model, and the corresponding angles change linearly with time. The
values ofνL∗ ,νG∗ ,νH∗ are sometimes referred to as the proper frequencies of the system. Finally,
applying the transformation from canonical momenta to orbital elements yields constant values of
(a∗, e∗, I∗) which constitute a set of proper orbital elements of each solution. Although there are
several different definitions of proper elements, the present one has the advantage of representing
the averaged temporal values of each orbital element, instead of (for example) their maximum of
minimum for given values of the angular variables.

Equations (65) and (58) have three important applications.First, from the initial conditions given in
osculating (i.e. non-starred) variables, we can solve these equations iteratively to obtain the proper
elements(a∗, e∗, I∗) and the proper frequencies. Second, from these proper elements, we can then
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Fig. 7.— Numerical proper elements (filled circles) and analytical values obtained with a full averaging
(continuous lines), as function of the initial eccentricity. Other initial orbital values were taken equal to
aini = 0.1 AU, Iini = 40 deg. andωini = Ωini = 0. Recall thats = sin (I/2).

deduce the maximum and minimum value of the original osculating elements, or their value for any
given set of the angles. This allows us to transform from one definition of proper element to any
other, thus simplifying a comparison with other works, especially those numerical in nature. Finally,
these solutions represent the secular dynamics of the system, and are valid as long as we are not in the
vicinity of any secular (or Lidov-Kozai) resonance.

• Partial Averaging & Lidov-Kozai: If the eccentricity and/or inclination of the satellite isvery large,
the structure of the secular phase plane defined by the Lidov-Kozai resonance cannot be neglected,
and the full averaging yields imprecise results. In such a case, we must limit the averaging in Section
4 to the mean anomalies, and solve the resulting Lidov-KozaiHamiltonian in full.

7.1. Comparisons with Numerical Integrations

To test both these approaches, we have integrated 1452 test satellites for105 years. The particles were
placed around a Jupiter-like planet on a circular orbit witha = 5.2 AU. The mass of the planet was assumed
to be10−3 that of the Sun. The satellite orbits were chosen within the following intervals:a = 0.05 − 0.15

AU, e = 0 − 0.7, I = 0 − 50 degrees (for direct orbits) andI = 130 − 180 degrees for the retrograde case.
The initial longitudes were assumed to be zero. The initial configuration was such that the Sun, the planet
and the satellite are on the x-axis, and the satellite was in the pericenter and the ascending node of its orbit.

The results of the numerical integrations were Fourier analyzed using 16384 points separated by 5
years, yielding a total time span of 81920 years. Due to the usual confusion about the definition of the
longitude of pericenter for retrograde orbits, we determined the frequencies of the nodal longitude and
the argument of the pericenter instead. The argument of the pericenterω is the angle between node and
pericenter, and is always positive by definition. Thus,̟ = Ω + ω for prograde orbits and̟ = Ω −
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Fig. 8.— Frequencies of the pericentric argumentνG and of the nodeνH for fictitious Jovian direct satellites.
Left: Frequencies as a function of the initial eccentricity, foraini = 0.1 AU and Iini = 10 deg. Right:
Frequencies as a function of the initial inclination foraini = 0.1 AU and eini = 0.28. Numerical data
is presented as filled circles, while the analytical resultsare shown in lines. The dotted lines show the
frequencies obtained from the first-order model; dashed line represents the second-order model, and the
continuous line the third-order. On the right-hand plots, gray lines correspond to results obtained via a
partial averaging (over the mean anomalies) and a semi-numerical solution of the Lidov-Kozai Hamiltonian.

ω for retrograde orbits. The proper eccentricities and inclinations were estimated as the largest Fourier-
term amplitude in(e cos ω, e sinω) and in(I cos Ω, I sin Ω), using the Fourier method by Sidlichovský and
Nesvorný (1987). The proper semimajor axis was take equal to its mean value over the total integration time
span.

Figure 7 shows an example of the estimation of proper orbitalelements. Filled circles are the numerical
results from our simulations, while the continuous lines are the analytical values calculated from our full
averaged third-order model. We can see a very good agreement, even though the definition of the numerical
and analytical proper elements is not exactly the same. In Figure 8 we show the calculations of the frequen-
cies of the pericentric distance (i.e.νG) and of the ascending node (i.e.νH) for a series of fictitious direct
Jovian satellites. As mentioned in Cuk and Burns (2004) (seealso Saha and Tremaine 1993) in the case of
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Fig. 9.— Frequencies of the pericentric argumentνG and of the nodeνH for fictitious Jovian retrograde
satellites.Left: Frequencies as a function of the initial eccentricity, foraini = 0.1 AU andIini = 140 deg.
Right: Same as left plots, but foraini = 0.15 AU andIini = 150 deg. The meaning of the different types
of curves is the same as for the previous figure.

νG we note a big difference between the first-order and second-order averaging. For low inclinations the
nodal rate can be successfully approximated by low-order solutions.

The right-hand plots of Figure 8, especially for high inclinations, show the importance of the Lidov-
Kozai resonance. Although none of these fictitious satellites are actually in aω-libration, the change in the
topology of the phase plane makes the full averaging much more imprecise than a correct treatment of the
Lidov-Kozai Hamiltonian.

Figure 9 shows similar results, but now for retrograde orbits with high inclinations with respect to the
invariant plane. Recall also that since the initial eccentricity is taken as the value ofe for ω = 0, this initial
value actually corresponds to the minimum eccentricity of the orbit. Thus, the mean and maximum values
attained by this orbital element throughout its evolution is actually much higher. On the right-hand side,
corresponding to initial semimajor axis equal toaini = 0.15 AU, the second-order full averaging yields
frequencies which appear outside the range of the graphs, and are thus completely unreliable.
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Pasiphae S/2003 J20

Fig. 10.— Numerical simulation (gray) versus third-order secular model (black) showing the orbital evolu-
tion of the satellites Pasiphae and S/2003 J20, consideringthe planet in a circular and planar orbit.

7.2. Application to Real Satellites

As a final test, we apply our model to two particularly difficult cases: Pasiphae and Nereid. The first
is an irregular satellite of Jupiter with high inclination and large eccentricity. The second is the well known
Neptune’s moon which moves in a nearly planar, highly eccentric orbit. The initial values of the semimajor
axis, eccentricity and inclination adopted for our study were as follows. For Pasiphae:a = 0.156 AU,
e = 0.379 andI = 140.1 degrees. For Nereid,a = 0.037 AU, e = 0.75 andI = 5.04 degrees. In both
cases, the perturber was assumed to move in a planar and circular orbit.

Figure 10 shows the evolution of the eccentricity and inclination for a few periods of the secular angles.
Left hand plots correspond to Pasiphae, while the right-hand graphs show results for the recently discovered
Jovian satellite S/2003 J20. In gray we present the orbital variation obtained from an exact numerical
integration of the three-body problem. In black we show the results of the secular model. Note that in both
cases the agreement is very good, not only with regards to thefrequencies of the secular angles, but also in
the amplitudes of oscillation. For S/2003 J20 a small discrepancy is noted for the secular frequencies, of
the order of1%; however this satellite has a large semimajor axis and inclination. Moreover, this particular
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Fig. 11.— Jovian satellite S/2003 J20: temporal evolution of the argument of pericenter (left) and longitude
of the ascending node (right). Grey lines correspond to direct numerical simulations while black indicate
the results of our third-order secular model. Note the libration of ω around90 degrees.

body is located deep inside the Lidov-Kozai resonance. In Figure 11 shows the evolution of the argument
of the pericenter (left) and longitude of the ascending node(right). Grey curves show the results of a direct
numerical simulations, while our analytical results are presented in black. The libration ofω around90

degrees is very well reproduces, both in amplitude and period of oscillation.

8. Conclusions

We have described here a new high-order analytical model forthe secular (i.e. long-term) orbital
evolution of planetary satellites. The model is based on a high-order Legendre expansion of the disturbing
Hamiltonian and a third-order Hori perturbation theory. Inthis paper we have included all terms in the
Hamiltonian up to fifth-order ina1/a2, e1 andη (or ξ).

The model is valid for any inclination (prograde or retrograde) and eccentricities below∼ 0.67. Practi-
cally all known irregular satellites of the outer planets lie within this convergence limit. The only exceptions
are Pasiphae, S/2000 S4 and Setebos (all withemax ∼ 0.71) and Nereid (emax ∼ 0.75). However, as has
been shown above, even in these cases the precision of the third-order truncated series is very good.

Comparisons with exact numerical integrations have shown that the model yields accurate results even
for high eccentricities and inclinations, and large separations of a satellite from the parent planet. We
have used this model to briefly analyze the phase space in the vicinity of the irregular satellites of the
outer planets. We found that the Kozai resonance occurs at progressively larger (proper) inclinations with
increasing separation of the satellite from the parent planet. We also calculated the precession frequencies
of orbits of the irregular satellites at Jupiter, These results will be particularly useful for determining the
locations and strengths of secular resonances in the space occupied by distant satellite orbits.
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Milani, A. and Knežević, Z. (1994). Asteroid proper elements and the dynamical structure of the asteroid
main belt.Icarus, 107, 219-254.
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