Orbit Fit and Astrometric record for 13UL17

The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.

# Object: 13UL17    
# Created Sat Oct 20 01:09:19 2018
# Orbit generated by ELGB
# -->Covariance matrix from a Bernstein fit
# Fitting   37 observations of   37
# Arc:   5.11y
# First observation: 2013/08/02
#  Last observation: 2018/09/12
# Chi-squared of fit:     9.61 DOF:   68 RMS:  0.09
# Min/Max residuals:    -0.31    0.20
# Exact a, adot, b, bdot, g, gdot:
  1.537759E-05  2.294857E-02  4.030557E-07  2.964373E-04  2.376635E-02  1.117597E-03
# Covariance matrix:
  1.6453E-13 -6.3434E-14  6.4380E-16 -3.6093E-16  8.1601E-14 -3.3250E-13
 -6.3434E-14  1.8117E-13 -4.7454E-16  1.9685E-15  3.7883E-14  1.6168E-12
  6.4380E-16 -4.7454E-16  6.4965E-14 -1.7529E-14  4.3696E-16 -3.9066E-15
 -3.6093E-16  1.9685E-15 -1.7529E-14  1.1985E-14  6.2337E-16  1.9021E-14
  8.1601E-14  3.7883E-14  4.3696E-16  6.2337E-16  1.0538E-13  4.7397E-13
 -3.3250E-13  1.6168E-12 -3.9066E-15  1.9021E-14  4.7397E-13  1.5579E-11
#      lat0       lon0       xBary       yBary       zBary        JD0
   -1.708726   16.083465    0.928775   -0.012310   -0.413588  2456507.017088
# Heliocentric elements and errors
Epoch:              2456506.5000  =  2013/08/02
Mean Anomaly:           73.06423 +/-     0.088
Argument of Peri:      216.61204 +/-     0.098
Long of Asc Node:       82.33211 +/-     0.008
Inclination:             1.83090 +/-     0.000
Eccentricity:         0.02544521 +/-    0.0002
Semi-Major Axis:     42.79213710 +/-    0.0027
Time of Perihelion: 2435755.1338 +/-      25.2
Perihelion:          41.70328217 +/-    0.0079
Aphelion:            43.88099203 +/-    0.0080
Period (y)              279.9330 +/-      0.03
# Ecliptic coordinates at JD0 (AU and AU/d)
Ecliptic X           41.06607246 +/-    0.0006
Ecliptic Y           10.87686370 +/-    0.0001
Ecliptic Z           -1.25459117 +/-    0.0000
Ecliptic XDOT        -0.00061399 +/-    0.0000
Ecliptic YDOT         0.00257528 +/-    0.0000
Ecliptic ZDOT         0.00003044 +/-    0.0000
# Distances at JD0 (AU)
Heliocenter to KBO   42.50060157 +/-    0.0005
Geocenter to KBO     42.07629610 +/-    0.0006
# Hcoef:  8.15

The following table shows the complete astrometric record for 13UL17. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (13UL17) followed by the observatory code and reference code for the source of the astrometry.

2013 08  02.51631  01 01 54.330  +04 44 56.69  24.4r 13UL17    568  C~2NKZ      
2013 08  02.55904  01 01 54.270  +04 44 56.35  24.5r 13UL17    568  C~2NKZ      
2013 08  30.43177  01 00 49.522  +04 37 20.43  24.1r 13UL17    568  C~2NKZ      
2013 08  31.43593  01 00 46.232  +04 36 58.47  23.0r 13UL17    568  C~2NKZ      
2013 09  04.41593  01 00 32.590  +04 35 28.10  25.2r 13UL17    568  C~2NKZ      
2013 09  04.45871  01 00 32.440  +04 35 27.06  24.3r 13UL17    568  C~2NKZ      
2013 10  06.39713  00 58 20.588  +04 21 25.65  24.3r 13UL17    568  C~2NKZ      
2013 10  06.47088  00 58 20.253  +04 21 23.48  24.1r 13UL17    568  C~2NKZ      
2013 10  06.47992  00 58 20.210  +04 21 23.20  24.5r 13UL17    568  C~2NKZ      
2013 10  31.23884  00 56 32.540  +04 10 28.32  24.2r 13UL17    568  C~2NKZ      
2013 10  31.28183  00 56 32.364  +04 10 27.19  24.3r 13UL17    568  C~2NKZ      
2013 10  31.32461  00 56 32.189  +04 10 26.28  24.4r 13UL17    568  C~2NKZ      
2013 11  01.26510  00 56 28.394  +04 10 03.67  24.1r 13UL17    568  C~2NKZ      
2013 11  05.42210  00 56 11.991  +04 08 27.29  24.7r 13UL17    568  C~2NKZ      
2013 11  29.22781  00 54 55.986  +04 01 18.44  24.5r 13UL17    568  C~2NKZ      
2013 11  29.23812  00 54 55.962  +04 01 18.34  24.6r 13UL17    568  C~2NKZ      
2013 11  29.30546  00 54 55.773  +04 01 17.40  24.3r 13UL17    568  C~2NKZ      
2013 12  04.25494  00 54 44.786  +04 00 20.72  24.4r 13UL17    568  C~2NKZ      
2013 12  04.30703  00 54 44.673  +04 00 19.87  24.4r 13UL17    568  C~2NKZ      
2013 12  05.25309  00 54 42.801  +04 00 10.66  23.9r 13UL17    568  C~2NKZ      
2014 06  27.58615  01 06 32.369  +05 16 09.71  24.6r 13UL17    568  C~2NKZ      
2014 06  28.59119  01 06 34.230  +05 16 18.84  24.4r 13UL17    568  C~2NKZ      
2014 07  24.54916  01 06 52.401  +05 17 08.70  24.8r 13UL17    568  C~2NKZ      
2014 07  27.57991  01 06 50.791  +05 16 51.55  24.7r 13UL17    568  C~2NKZ      
2014 11  24.27889  01 00 01.652  +04 33 59.58  24.8r 13UL17    568  C~2NKZ      
2014 12  17.27056  00 59 15.273  +04 30 08.31  23.9r 13UL17    568  C~2NKZ      
2015 01  17.27935  00 59 24.982  +04 32 36.34  24.4r 13UL17    568  C~2NKZ      
2015 08  20.52313  01 11 04.677  +05 43 10.07  24.1r 13UL17    568  C~2NKZ      
2015 12  07.37370  01 04 21.291  +05 02 27.54  23.5w 13UL17    568  C~2NKZ      
2017 07  24.60098  01 21 20.081  +06 48 41.72  24.5w 13UL17    568  C~2NKZ      
2017 08  25.51775  01 20 35.120  +06 43 06.83  24.6w 13UL17    568  C~2NKZ      
2017 08  30.45989  01 20 21.276  +06 41 35.70  24.6w 13UL17    568  C~2NKZ      
2018 09  09.39841  01 24 43.443  +07 08 48.77        13UL17    568  C~2kPT      
2018 09  09.61045  01 24 42.698  +07 08 44.15        13UL17    568  C~2kPT      
2018 09  11.43066  01 24 36.285  +07 08 03.69        13UL17    568  C~2kPT      
2018 09  12.62030  01 24 31.974  +07 07 36.86        13UL17    568  C~2kPT      
2018 09  12.62868  01 24 31.945  +07 07 36.47        13UL17    568  C~2kPT      

The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.

  1   0.0000      0.00     0.01       0.00    -0.04
  2   0.0001      0.00    -0.02       0.00     0.05
  3   0.0764      0.00    -0.15       0.00     0.06
  4   0.0792      0.00     0.01       0.00     0.12
  5   0.0901      0.00    -0.10       0.00     0.11
  6   0.0902      0.00    -0.04       0.00     0.07
  7   0.1776      0.00     0.11       0.00     0.16
  8   0.1778      0.00     0.12       0.00     0.04
  9   0.1779      0.00     0.10       0.00     0.01
 10   0.2456      0.00     0.00       0.00    -0.01
 11   0.2458      0.00     0.02       0.00    -0.10
 12   0.2459      0.00     0.06       0.00     0.02
 13   0.2485      0.00     0.12       0.00    -0.05
 14   0.2598      0.00     0.13       0.00     0.11
 15   0.3250      0.00     0.14       0.00     0.04
 16   0.3250      0.00     0.17       0.00     0.07
 17   0.3252      0.00    -0.15       0.00    -0.01
 18   0.3388      0.00     0.01       0.00     0.09
 19   0.3389      0.00    -0.04       0.00    -0.23
 20   0.3415      0.00     0.03       0.00    -0.05
 21   0.9009      0.00    -0.09       0.00    -0.01
 22   0.9037      0.00     0.11       0.00     0.09
 23   0.9748      0.00     0.04       0.00     0.05
 24   0.9831      0.00     0.20       0.00    -0.04
 25   1.3108      0.00     0.16       0.00    -0.31
 26   1.3737      0.00     0.06       0.00    -0.03
 27   1.4586      0.00    -0.07       0.00     0.01
 28   2.0479      0.00    -0.05       0.00     0.05
 29   2.3459      0.00     0.03       0.00     0.01
 30   3.9756      0.00    -0.09       0.00    -0.04
 31   4.0630      0.00     0.03       0.00    -0.00
 32   4.0765      0.00     0.01       0.00     0.06
 33   5.1030      0.00    -0.05       0.00     0.03
 34   5.1036      0.00     0.07       0.00     0.05
 35   5.1086      0.00     0.09       0.00     0.03
 36   5.1119      0.00     0.09       0.00     0.13
 37   5.1119      0.00     0.12       0.00    -0.07

The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.

13UL17    quality flag:3

Type:      CLASSICAL CLASSICAL CLASSICAL

axisobj        43.019    43.019    43.019
ecceobj         0.029     0.030     0.029
incobj          1.831     1.831     1.831
qmin           40.874    40.883    40.872
qmax           44.812    44.810    44.813
amean          42.768    42.767    42.767
amin           42.450    42.445    42.449
amax           43.096    43.096    43.096
emean           0.024     0.024     0.024
emin            0.000     0.001     0.000
emax            0.040     0.040     0.040
imean           1.072     1.072     1.072
imin            0.647     0.647     0.647
imax            1.405     1.405     1.405
excite_mean     0.031     0.031     0.031
fracstop        1.000     1.000     1.000
cjmean          3.086     3.086     3.086

libcent 0      -180.0    -180.0    -180.0
libamp  0      -180.0    -180.0    -180.0
libcent 1      -180.0    -180.0    -180.0
libamp  1      -180.0    -180.0    -180.0
libcent 2      -180.0    -180.0    -180.0
libamp  2      -180.0    -180.0    -180.0
libcent 3      -180.0    -180.0    -180.0
libamp  3      -180.0    -180.0    -180.0
libcent 4      -180.0    -180.0    -180.0
libamp  4      -180.0    -180.0    -180.0

kozaimean       177.9     178.0     177.9
kozaiamp        180.0     180.0     180.0