Orbit Fit and Astrometric record for 135742

The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.

# Object: 135742    
# Created Tue Oct 24 01:36:32 2017
# Orbit generated by ELGB
# -->Covariance matrix from a Bernstein fit
# Fitting   37 observations of   37
# Arc:   3.88y
# First observation: 2002/08/05
#  Last observation: 2006/06/21
# Chi-squared of fit:    37.08 DOF:   68 RMS:  0.18
# Min/Max residuals:    -0.44    0.46
# Exact a, adot, b, bdot, g, gdot:
  1.635206E-05  2.547674E-02  2.065465E-06  2.409159E-03  2.523534E-02  2.857748E-03
# Covariance matrix:
  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00
  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00
  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00
  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00
  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00
  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00
#      lat0       lon0       xBary       yBary       zBary        JD0
   -0.822801  -31.257637    0.282446   -0.014113   -0.978430  2452491.960733
# Heliocentric elements and errors
Epoch:              2452492.5000  =  2002/08/06
Mean Anomaly:           51.44782 +/-     0.000
Argument of Peri:      288.14238 +/-     0.000
Long of Asc Node:      336.77438 +/-     0.000
Inclination:             5.46441 +/-     0.000
Eccentricity:         0.12165956 +/-    0.0000
Semi-Major Axis:     43.45876573 +/-    0.0000
Time of Perihelion: 2437537.7557 +/-       0.0
Perihelion:          38.17159160 +/-    0.0000
Aphelion:            48.74593985 +/-    0.0000
Period (y)              286.4998 +/-      0.00
# Ecliptic coordinates at JD0 (AU and AU/d)
Ecliptic X           34.56135229 +/-    0.0000
Ecliptic Y          -21.30317743 +/-    0.0000
Ecliptic Z           -0.56893914 +/-    0.0000
Ecliptic XDOT         0.00169467 +/-    0.0000
Ecliptic YDOT         0.00219743 +/-    0.0000
Ecliptic ZDOT         0.00025711 +/-    0.0000
# Distances at JD0 (AU)
Heliocenter to KBO   40.60333526 +/-    0.0000
Geocenter to KBO     39.62692893 +/-    0.0000
# Hcoef:  7.16

The following table shows the complete astrometric record for 135742. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (135742) followed by the observatory code and reference code for the source of the astrometry.

2002 08  05.45999  22 04 43.02   -12 40 58.5   22.5R 135742    568  Cp2010      
2002 08  05.52244  22 04 42.73   -12 41 00.0   22.6R 135742    568  Cp2010      
2002 08  05.58780  22 04 42.43   -12 41 01.5   22.7R 135742    568  Cp2010      
2002 09  02.98961  22 02 28.16   -12 52 29.2         135742    493  Cp2010      
2002 09  03.03341  22 02 27.97   -12 52 30.0         135742    493  Cp2010      
2002 09  03.99461  22 02 23.50   -12 52 52.2         135742    950  Cp2010      
2002 09  04.03060  22 02 23.33   -12 52 53.3   22.7R 135742    950  Cp2010      
2002 09  04.07120  22 02 23.14   -12 52 54.4         135742    950  Cp2010      
2002 09  05.99491  22 02 14.26   -12 53 38.9         135742    493  Cp2010      
2002 09  06.00801  22 02 14.20   -12 53 39.1         135742    493  Cp2010      
2002 09  06.07281  22 02 13.91   -12 53 40.9         135742    493  Cp2010      
2002 09  06.08571  22 02 13.81   -12 53 41.2         135742    493  Cp2010      
2002 09  07.02081  22 02 09.54   -12 54 02.4         135742    493  Cp2010      
2002 09  07.03351  22 02 09.49   -12 54 02.7         135742    493  Cp2010      
2002 09  07.10061  22 02 09.17   -12 54 04.2         135742    493  Cp2010      
2002 09  30.26756  22 00 34.19   -13 01 47.7   22.4R 135742    568  Cp2010      
2002 09  30.32329  22 00 33.98   -13 01 48.7   22.4R 135742    568  Cp2010      
2002 09  30.38512  22 00 33.75   -13 01 49.9   22.6R 135742    568  Cp2010      
2002 10  03.86081  22 00 22.02   -13 02 44.9         135742    493  Cp2010      
2002 10  03.94101  22 00 21.79   -13 02 46.4         135742    493  Cp2010      
2002 10  03.95391  22 00 21.74   -13 02 46.2         135742    493  Cp2010      
2003 06  24.52643  22 12 29.94   -11 49 48.8   23.2i 135742    568  Cp2010      
2003 06  25.50024  22 12 27.97   -11 49 59.6   23.0i 135742    568  Cp2010      
2003 06  25.55086  22 12 27.84   -11 50 00.0   23.0i 135742    568  Cp2010      
2003 06  25.59926  22 12 27.76   -11 50 00.5   23.2i 135742    568  Cp2010      
2003 07  28.26119  22 10 41.90   -11 59 24.8         135742    809  Cp2010      
2003 07  28.37330  22 10 41.42   -11 59 27.7         135742    809  Cp2010      
2003 07  28.41532  22 10 41.26   -11 59 28.7         135742    809  Cp2010      
2003 07  29.23289  22 10 37.84   -11 59 46.9         135742    809  Cp2010      
2003 08  31.33942  22 08 04.97   -12 13 08.0   23.5g 135742    568  Cp2010      
2003 08  31.37380  22 08 04.82   -12 13 08.8   22.9g 135742    568  Cp2010      
2003 08  31.40015  22 08 04.70   -12 13 09.3   23.1g 135742    568  Cp2010      
2004 09  06.30305  22 12 53.68   -11 37 28.3   22.6R 135742    695  Cp2010      
2004 09  07.28000  22 12 49.18   -11 37 51.6   22.4R 135742    695  Cp2010      
2004 09  07.35414  22 12 48.87   -11 37 53.4   22.7R 135742    695  Cp2010      
2006 06  21.32536  22 28 08.69   -09 54 32.2   23.0R 135742    304  Cr4824      
2006 06  21.36792  22 28 08.63   -09 54 32.4         135742    304  Cr4824      

The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.

  1   0.0000      0.00    -0.06       0.00    -0.30
  2   0.0002      0.00     0.02       0.00    -0.14
  3   0.0003      0.00     0.06       0.00    -0.10
  4   0.0781      0.00    -0.21       0.00    -0.11
  5   0.0782      0.00     0.05       0.00     0.12
  6   0.0809      0.00     0.06       0.00     0.39
  7   0.0810      0.00     0.06       0.00     0.13
  8   0.0811      0.00     0.09       0.00    -0.02
  9   0.0863      0.00     0.24       0.00     0.07
 10   0.0864      0.00     0.26       0.00     0.18
 11   0.0866      0.00     0.44       0.00    -0.14
 12   0.0866      0.00    -0.16       0.00    -0.15
 13   0.0891      0.00     0.03       0.00     0.10
 14   0.0892      0.00     0.16       0.00     0.09
 15   0.0894      0.00     0.03       0.00     0.11
 16   0.1528      0.00     0.09       0.00     0.08
 17   0.1529      0.00    -0.06       0.00     0.00
 18   0.1531      0.00    -0.19       0.00    -0.18
 19   0.1626      0.00    -0.15       0.00    -0.15
 20   0.1629      0.00     0.41       0.00    -0.44
 21   0.1629      0.00     0.30       0.00    -0.04
 22   0.8845      0.00    -0.10       0.00     0.06
 23   0.8872      0.00     0.26       0.00    -0.09
 24   0.8873      0.00    -0.04       0.00     0.08
 25   0.8874      0.00     0.35       0.00     0.12
 26   0.9769      0.00    -0.22       0.00     0.46
 27   0.9772      0.00    -0.25       0.00     0.04
 28   0.9773      0.00     0.02       0.00    -0.04
 29   0.9795      0.00     0.07       0.00     0.02
 30   1.0702      0.00    -0.22       0.00     0.07
 31   1.0703      0.00    -0.00       0.00     0.10
 32   1.0703      0.00     0.10       0.00     0.25
 33   2.0886      0.00     0.19       0.00     0.01
 34   2.0912      0.00    -0.20       0.00     0.06
 35   2.0914      0.00     0.32       0.00     0.02
 36   3.8764      0.00     0.04       0.00    -0.16
 37   3.8765      0.00     0.08       0.00    -0.05

The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.

135742    quality flag:2

Type:      CLASSICAL CLASSICAL    7:4EEE

axisobj        43.794    43.794    43.794
ecceobj         0.125     0.125     0.125
incobj          5.443     5.443     5.443
qmin           36.511    36.777    35.380
qmax           51.395    51.035    52.559
amean          43.727    43.727    43.727
amin           43.348    43.337    43.361
amax           44.161    44.146    44.169
emean           0.112     0.110     0.134
emin            0.046     0.046     0.053
emax            0.164     0.157     0.190
imean           7.526     7.624     6.430
imin            5.277     5.566     4.085
imax           10.682    10.058     8.831
excite_mean     0.177     0.176     0.178
fracstop        1.000     1.000     1.000
cjmean          3.061     3.061     3.060

libcent 0      -180.0    -180.0     204.4
libamp  0      -180.0    -180.0     114.5
libcent 1      -180.0    -180.0    -180.0
libamp  1      -180.0    -180.0    -180.0
libcent 2      -180.0    -180.0    -180.0
libamp  2      -180.0    -180.0    -180.0
libcent 3      -180.0    -180.0    -180.0
libamp  3      -180.0    -180.0    -180.0
libcent 4      -180.0    -180.0    -180.0
libamp  4      -180.0    -180.0    -180.0

kozaimean       254.3     274.6     232.9
kozaiamp         72.2      80.6     115.4