The Research and Education Collaborative Occultation Network: A system for coordinated TNO occultation observations

M. W. Buie and J. M. Keller. AJ 151, 73 (2016).


We describe a new system and method for collecting coordinated occultation observations of trans-Neptunian objects (TNOs). Occultations by objects in the outer solar system are more difficult to predict due to their large distance and limited span of the astrometric data used to determine their orbits and positions. This project brings together the research and educational community into a unique citizen-science partnership to overcome the difficulties of observing these distant objects. The goal of the project is to get sizes and shapes for TNOs with diameters larger than 100 km. As a result of the system design it will also serve as a probe for binary systems with spatial separations as small as contact systems. Traditional occultation efforts strive to get a prediction sufficiently good to place mobile ground stations in the shadow track. Our system takes a new approach of setting up a large number of fixed observing stations and letting the shadows come to the network. The nominal spacing of the stations is 50 km so that we ensure two chords at our limiting size. The spread of the network is roughly 2000 km along a roughly north–south line in the western United States. The network contains 56 stations that are committed to the project and we get additional ad hoc support from International Occultation Timing Association members. At our minimum size, two stations will record an event while the other stations will be probing the inner regions for secondary events. Larger objects will get more chords and will allow determination of shape profiles. The stations are almost exclusively sited and associated with schools, usually at the 9–12 grade level. We present a full description of the system we have developed for the continued exploration of the Kuiper Belt.

PDF (723k).

[ Marc Buie Home Page, Bibliography / Boulder/SwRI Home /