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ABSTRACT

Calculation of a stellar occultation lightcurve from an assumed refractivity profile involves the integral of the
refractivity or its derivatives along the line of sight through an atmosphere. For the general case, normal numerical
integration can be time consuming for least-squares fitting with a modest number of free parameters, or for
calculation at a fine grid for comparison with local refocusing (“spikes”) in a lightcurve. A new method, based
on the Fourier decomposition of the refractivity profile, can rapidly calculate the line-of-sight integrals needed
for occultations. The method is formulated for small planets, to be applicable to Pluto and Triton. The Fourier
decomposition method may have applicability to a wider range of atmospheric studies.
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1. INTRODUCTION

With the passage of Pluto into the Galactic plane, there
have been a recent influx of extremely high-quality occulta-
tion lightcurves (e.g., Pasachoff et al. 2005, Young et al. 2008),
allowing an investigation of Pluto’s atmospheric structure as a
function of time, latitude, and local time of day. While the rela-
tionship between the atmospheric structure and the occultation
lightcurve has been solved for the case of temperatures propor-
tional to powers of the radius (Elliot & Young 1992; Eshleman &
Gurrola 1993), the temperature profiles actually encountered in
atmospheres are more complicated. Furthermore, the quality of
the recent Pluto occultations can support least-squares fitting to
a larger number of free parameters. Chamberlain & Elliot (1997)
present a method of calculating a grid of occultation lightcurves
from arbitrary atmospheric models. While this improved com-
putation speed, direct integration can still be prohibitively slow
for fitting models complex enough to fully interpret these recent
data.

A second problem in occultation studies that is limited
by computation speed is the study of the characteristics of
the smallest scale structures in dense planetary atmospheres,
usually referred to as spikes. These are caused by temperature
fluctuations that appear to be similar in character to saturated
gravity waves seen in the Earth’s atmosphere (McLandress
1988). Of particular interest are the power spectrum of the
temperature fluctuations and the histogram of temperature
gradients. Unfortunately, the power spectra of temperature
fluctuations tend to be muted and distorted when derived from
Abel transforms, which cannot account for ray crossing, wave
optics, or the finite sizes of stars (Sicardy et al. 1999). Forward
modeling can account for these effects explicitly. However, an
extremely rapid method of calculating occultation lightcurves
with forward modeling must be used to study waves at the
smallest sizes.

Such a method of rapid computation of occultation
lightcurves uses Fourier decomposition of the refractivity pro-
file. The key to this method is the definition of the refractivity
profile as the product of a baseline refractivity profile that is
roughly exponential with radius and a scaling factor that is de-
composed into its Fourier components. The exponential term
from the baseline atmosphere can then be combined with the
sine and cosine terms in the Fourier decomposition to form

expressions with imaginary scale heights. This leads to expres-
sions for the pressure, line-of-sight integral of refractivity, bend-
ing angle, and bending angle derivative based on simple manipu-
lations of the Fourier decomposition of the refractivity. Section 2
reviews the general occultation equations. Section 3 presents
the equations for the baseline profiles of refractivity, its line-
of-sight integral, bending angle, bending angle derivative, and
pressure, all in forms most useful to the subsequent applica-
tion to the general refractivity profile. The heart of the method
is demonstrated in Section 4, with detailed derivations for the
line-of-sight integral of refractivity and for pressure. A simple
example is presented in Section 5. The possible applications of
the model are discussed in Section 6.

2. GENERAL OCCULTATION EQUATIONS

In this section, I present the equations relating the refractivity
to other quantities, without derivation. The reader is referred to,
e.g., Elliot & Young (1992), Wasserman & Veverka (1973), or
Eshleman & Gurrola (1993) for further background.

The pressure (p) is related to the refractivity (ν) by

p(r) =
∫ ∞

r

g(r ′)μ(r ′)mamu
L

νSTP(r ′)
ν(r ′)dr ′ (1)

where r is the radius from the planet center, r′ is the variable of
integration, g is the gravitational acceleration, μ is the molecular
weight, mamu is the weight of an atomic mass unit, νSTP is
the refractivity at standard temperature and pressure, and L is
Loschmidt’s number. Often, pressure is written in terms of the
scale height (H), as d lnp = −dr/H. Here I write the pressure as
an integral of refractivity for use with the Fourier decomposition
of refractivity later. For constant atmospheric composition, μ
and νSTP are independent of r. However, since Earth-based
stellar occultations typically probe near the homopause of the
occulting atmosphere, I write the pressure in the general form.

I derive the temperature (T) using the ideal gas law, so that

T (r) = p(r)νSTP(r)

kLν(r)
. (2)

The line-of-sight integral of refractivity (α) is given by

α(r) = 2
∫ ∞

0
ν(r ′)

r ′
√

r ′2 − r2
dr ′, (3)
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Table 1
Fourier Transforms of Occultation Parameters

Quantity fL f1 f2 f3 f4 β

ν ν̄(z) 0 0 0 0 0

α ν̄(z)r
√

2πδ 9−b
8

345+46b−7b2

128
9555+5455b+452b2−75b3

1024

1371195
32768 + 386421

8192 b

+ 251153
16384 b2 + 6741

8192 b3 − 5509
32768 b4 1/2

θ −ν̄(z)
√

2π
δ

−3+3b
8

−15+14b+b2

128
−105+27b+69b2+9b3

1024

− 4725
32768 − 1059

8192 b+
2353
16384 b2 + 3764

8192 b3 + 491
32768 b4 −1/2

dθ
dr

ν̄(z)
r

√
2π

δ3
1+15b

8
9−34b+25b2

128
75−81b+b2+5b3

1024

3675
32768 − 339

8192 b

− 10555
16384 b2 − 67

8192 b3 + 59
32768 b4

−3/2

p ν̄(r)g(r)μmamu
L

νSTP
rδ 0 0 0 0 1

and the bending angle (θ ) is

θ (r) = dα(r)

dr
. (4)

For planets with spherical symmetry, the bending angle and its
derivative are needed to calculate an observed lightcurve. The
radius in the shadow plane (ρ) is

ρ(r) = r + Dθ (r) (5)

where D is the observer–atmosphere distance. The flux from a
single location in the atmosphere, for a spherical atmosphere
with no extinction, is

φ(r) =
∣∣∣∣ 1

1 + Dθ (r)/r

∣∣∣∣ ×
∣∣∣∣ 1

1 + Ddθ (r)/dr

∣∣∣∣ . (6)

3. BASELINE ATMOSPHERE

Throughout, I use the small-planet assumptions, where grav-
ity varies as r−2, and terms to first few orders in the ratio of
scale height over radius are kept. This will allow this method
to be used for Pluto, where the radius is only ∼20 times larger
than the scale height. The starting point of this formulation is
the baseline refractivity (ν̄), where baseline quantities are in-
dicated with an overbar, to distinguish them from the general
atmosphere in Section 4. The intent is to describe an analytic
refractivity profile that approximates the general profile over
the region of interest. This requires a baseline refractivity that
depends on three parameters—two to ensure a match between
the baseline refractivity and the general profile at the ends of the
region of interest, and one to control the curvature of the log of
refractivity.

A suitable choice for a baseline atmosphere is one with
constant composition and temperature that varies as rb. This
model has two advantages. First, the temperature never reaches
negative values, and second, this class of atmosphere has been
previously studied in the context of occultations (Elliot & Young
1992; Eshleman & Gurrola 1993). With these assumptions, the
refractivity over the region of interest can be described as

ν̄(z) = νref

(
r

rref

)−b

e−z/Href (7)

where the pseudoaltitude (z) is defined by

z ≡

⎧⎪⎨
⎪⎩

rref

1 + b

[
1 −

(
r

rref

)−(1+b)
]
, b �= −1

rref ln (r/rref) b = −1

. (8)

where the subscript ref refers to conditions at a reference radius.
Note that z is a function only of radius (r), the reference radius
(rref), and the temperature power (b). In particular, z does not
depend on the scale height or temperature. For large planets, or
for temperatures varying in proportion to gravity (b = −2), z ≈
r − rref is the altitude above the reference radius. The ratio of
the radius to the pressure scale height (λ) at radius r is given by

λ =
(

rref

Href

)(
r

rref

)−(1+b)

. (9)

for an atmosphere with constant composition and a refractivity
profile given by Equation (7) (Elliot & Young 1992). For b >−1,
z has a maximum value of rref/(1+b), and α is infinite for 1 > b �
−1 (Eshleman & Gurrola 1993). This is resolved physically by
noting that the equations of hydrostatic equilibrium fail as λ ≈
1, so that Equation (7) is valid only for radii below the exobase.
It is resolved mathematically by integrating Equation (3) to the
exobase, rather than infinity. For b = −1, where the functional
form of the refractivity is a power law (Eshleman & Gurrola
1993), I define z in Equation (8) to allow the combination of
a real scale height with imaginary arguments in the Fourier
decomposition.

The line-of-sight integral of refractivity (α) is derived in the
Appendix, using the same approach applied to the bending angle
integral in Elliot & Young (1992). To first order in the ratio of
scale height to radius (δ = 1/λ), this is

ᾱ(z) = ν̄(z)r
√

2πδ

[
1 +

9 − b

8
δ + O

(
δ2)] . (10)

The baseline quantities can be written as a lead term (fL)
multiplied by a series in δ.

f̄ (z) ≡ fL[1 + f1δ + f2δ
2 + f3δ

3 + f4δ
4 + · · ·]. (11)

The full coefficients to fourth order are given in Table 1.
The corresponding leading terms and coefficients for baseline
bending angle (θ̄), and bending angle derivative (dθ̄/dr) are
also given in Table 1, using the expansions from Elliot & Young
(1992).

The pressure can be derived from the refractivity either
by the application of the ideal gas law or by the integral in
Equation (1). Starting with Equation (1) makes explicit how the
pressure depends on the scale height, for use with the complex
scale height in Section 4. For gravity proportional to r−2 and
constant composition, the pressure becomes

p̄(r) = ν̄(r)g(r)μmamu
L

νSTP

∫ ∞

r

(r ′/r)−(2+b)e−(z′−z)/Href dr ′

(12)
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where z′ is defined by Equation (8), substituting r′ for r.
Performing the integral gives

p̄(r) = ν̄(r)g(r)μmamu
L

νSTP
rδ. (13)

The baseline temperature (T̄ ) is given by the ideal gas law,
Equation (2).

T̄ (r) = g(r)μmamu

k
rδ. (14)

4. FOURIER DECOMPOSITION

The refractivity can be generalized for nonconstant scale
heights by writing the refractivity as the product of a scale
factor (σν) and the baseline refractivity:

ν(z) = σν(z)ν̄(z) = σν(z)νref(r/rref)
−be−z/Href . (15)

I express the scale factor as a Fourier transform in vertical
wavenumber (m). I introduce the operators F and F−1 as the
forward and inverse Fourier transforms, so that

σ̂ν(m) = F {σν}(m) :=
∫ ∞

−∞
e−imzσν(z)dz (16)

σν(z) = F−1{σ̂ν}(z) := 1

2π

∫ ∞

−∞
eimzσ̂ν(m)dm. (17)

Substituting Equations (15) and (17) into Equation (3) yields

α(z) = 2
∫ ∞

0
νref(r

′/rref)
−be−z′/Href

{
1

2π

∫ ∞

−∞
eimz′

σ̂ν(m)dm

}

× r ′
√

r ′2 − r2
dr ′. (18)

I then define a complex scale height Hm

Hm = Href

1 − imHref
(19)

so that

− z′

Href
+ imz′ = − z′

Hm

(20)

and reverse the order of integration

α(z) = 1

2π

∫ ∞

−∞
σ̂ν(m)

×
{

2
∫ ∞

0
νref(r

′/rref)
−be−z′/Hm

r ′
√

r ′2 − r2
dr ′

}
dm.

(21)

Following Equation (10), this becomes

α(z) = 1

2π

∫ ∞

−∞
σ̂ν(m)

{√
2πδmrνref(r/rref)

−be−z/Hm

×
[

1 +
9 − b

8
δm + O

(
δ2
m

)]}
dm (22)

where

δm =
(

Hm

rref

)(
r

rref

)1+b

= Hm

Href
δ. (23)

By writing exp(−z/Hm) = exp(−z/Href) exp(imz) and pulling
out of the integral all terms that are independent of m, this can
be written as the following sum:

α(z) = ν̄(z)r
√

2πδ

[
1

2π

∫ ∞

−∞
σ̂ν(m)

{√
Hm

Href

e−z/Hm

}
dm

+

[
9 − b

8
δ

]
1

2π

∫ ∞

−∞
σ̂ν(m)

{√
Hm

Href
e−z/Hm

Hm

Href

}
dm

]

+ O
(
δ2
m

)
. (24)

At this point, it is convenient to define the following function,

Sβ(z) = [
F−1 {

σ̂ν(m) (Hm/Href)
β
}

(z)
]
, (25)

with which Equation (24) becomes

α(z) = ν̄(z)r
√

2πδ

(
S1/2(z) +

9 − b

8
δS3/2(z) + O(δ2)

)
. (26)

The pressure integral proceeds similarly. Substituting Equa-
tions (15) and (17) into Equation (1) gives

p(r) =
∫ ∞

r

g(r ′)μ(r ′)mamu
L

νSTP(r ′)
νref(r

′/rref)
−be−z′/Href

×
{

1

2π

∫ ∞

−∞
eimz′

σ̂ν(m)dm

}
dr ′. (27)

Reversing the order of integration gives

p(r) = 1

2π

∫ ∞

−∞
σ̂ν(m)

{∫ ∞

r

g(r ′)μ(r ′)mamu

× L

νSTP(r ′)
νref(r

′/rref)
−be−z′/Href eimz′

dr ′
}

dm.

(28)

The inner integral is solved with Equation (13), giving

p(r) = 1

2π

∫ ∞

−∞
σ̂ν(m)ν̄(r)g(r)μmamu

L

νSTP
rδmeimzdm. (29)

As with the α decomposition, factoring out terms that depend on
r allows pressure to be expressed in terms of Fourier transforms

p(r) = ν̄(r)g(r)μmamu
L

νSTP
rδ

1

2π

∫ ∞

−∞
σ̂ν(m)

Hm

Href
eimz′

dm,

(30)
expressed simply as

p(r) = ν̄(r)g(r)μmamu
L

νSTP
rδS1(z). (31)

The bending angle and bending angle derivative also involve
only the linear operators of integration and differentiation,
allowing a similar manipulation of the decomposed refractivity.
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Figure 1. Plot of the perturbation terms of temperature (T), pressure (p), refractivity (ν), line-of-sight integral of refractivity (α), bending angle (θ ), and bending angle
derivative (dθ/dr). Refractivity was calculated with b = 0, εν = 0.1, m = 2 π , Href = 4/m, and rref = 20Href (see the text). Solid lines show the calculation using
traditional line-of-sight integrals as in Chamberlain & Elliot (1997). Thick dashed lines show the calculation with the Fourier decomposition method presented here,
calculated to first order in the ratio of the scale height to radius, showing good agreement with direct integration. Thin dot-dashed lines plot the approximate wave
relations, showing the relative amplitudes and phase shifts of the various atmospheric quantities.

(A color version of this figure is available in the online journal.)

To first order in δ, these are

θ (z) = −ν̄(z)
√

2π/δ

(
S−1/2(z) − 3 − 3b

8
δS1/2(z) + O(δ2)

)
(32)

dθ (z)

dr
= ν̄(z)

r

√
2π

δ3

(
S−3/2(z) +

1 + 15b

8
δS−1/2(z) + O(δ2)

)
.

(33)
In analogy to Equation (11), the pressure, line-of-sight integral,
bending angle, and bending angle derivative can be written to
higher order in δ as

f (z) ≡ fL

[
Sβ + f1Sβ+1δ + f2Sβ+2δ

2

+ f3Sβ+3δ
3 + f4Sβ+4δ

4 + · · ·] (34)

where β is the power of δ in the leading term, given in Table 1.

5. EXAMPLE: ISOTHERMAL ATMOSPHERE WITH A
SINGLE WAVE

I tested this method numerically with an example of a baseline
atmosphere with b = 0, Href = 2/π , and rref = 40/π , where
Href and rref are in arbitrary units. I then added a single wave
to the baseline refractivity, σν(z) = 1 + εν cos(m0z), with εν =
0.1, m0 = 2π . This combination gives rref/Href = 20, so that
small-planet effects cannot be ignored, and Href m0 = 4, so the
wavelength is small compared with the scale height. The choice
of m0 = 2π gives a vertical wavelength (Lz = 2π/m0) of 1. The
refractivity was calculated on an evenly spaced grid of pseudo-
altitude z, with 32 points per wavelength, spanning z = −5.5 to
z = 19.6.

The Fourier method was tested against previously written
and tested benchmark code that calculates the line-of-sight
integral for an arbitrary grid of function values and radii. This
routine treats successive pairs of radii as the bounds of an
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atmospheric shell. Within each shell, the integrand is treated
as an exponential with a single scale height. For each shell, the
minimum and maximum value of the distance along the line of
sight (x = (r′2 − r3)1/2) is found. The function is evaluated at
20 points per shell, evenly spaced in x. The perturbation term
(εf = (f −f ′)/f ′) found by the benchmark calculation is shown
as thin, solid lines in Figure 1. The perturbation term calculated
by the method outlined in this paper is plotted with thick dashed
lines in Figure 1, showing the good agreement between the two
methods.

It is useful to consider the effect on a single wave with
wavenumber m0 where m0 Href 
 1, so that

Hm

Href
≈ i

m0Href
. (35)

In this case, the Fourier transform of ν is only non-zero at
wavenumbers –m0, 0, or m0

σ̂ν = πεν(δdirac(−m0) + δdirac(m0)) + 2πδdirac(0) (36)

where δdirac is the Dirac delta function (not to be confused with
the ratio of scale height to radius, δ).

Application of Equation (25) yields

Sβ(z) = εν (m0Href)
−β cos [m0 (z + Lzβ/4)] + 1. (37)

In the limit of large-planets (δ � 1) and short wavelengths
(m0 Href 
 1), the application of Equation (37) shows that the
amplitudes of the scaled perturbations of p and α are smaller
than for ν (Equations (38(a)), (38(b))), and shifted to smaller r,
while the opposite is the case for θ and dθ/dr (Equations 38(c),
38(d)). Because the pressure perturbations are small compared
to the refractivity (or density), the temperature perturbation is
approximately equal in magnitude to the refractivity (or density)
perturbation, but opposite in sign (Equation 38(e)):

εp ≈ εν(m0Href)
−1 cos [m0 (z + Lz/4)] (38a)

εα ≈ εν(m0Href)
−1/2 cos [m0 (z + Lz/8)] (38b)

εθ ≈ εν(m0Href)
1/2 cos [m0 (z − Lz/8)] (38c)

εdθ/dr = εν(m0Href)
3/2 cos [m0 (z − 3Lz/8)] (38d)

εT = −εν cos [m0z] . (38e)

The approximate wave relations are plotted as thin dot-dashed
lines in Figure 1. These demonstrate the relative magnitudes and
phase shifts. The difference between the approximate relations
and the perturbations calculated by direct integration or Fourier
decomposition is due to the small but non-negligible sizes of δ
and 1/(m0 Href).

6. DISCUSSION

The method was motivated by the two problems raised
in the introduction: the need to fit more complex thermal
models to recent Pluto stellar occultations, and the need for a
forward modeling approach for the study of small-scale structure
indicated by spikes in stellar occultations of the jovian planets
and Titan. However, the method laid out in this paper is very

general, and decomposition of an atmospheric profile may have
utility for a larger range of problems.

The approximate wave relations can be used to quickly
derive at what radii waves of a given wavelength and amplitude
will violate the assumptions of the Abel inversion of stellar
occultations lightcurves.

Wavelet analysis can be easily done by noting that a wavelet is
often expressed compactly in the spectral domain. The relation-
ship derived here between the Fourier components of various
atmospheric quantities means that the spectral components of a
wavelet in θ or dθ/dr can be written down directly, given the
spectral components in the corresponding wavelet in refractiv-
ity.

Because the phase delay is proportional to the line-of-
sight integral of refractivity, this method is applicable to radio
occultations as well as stellar, with the caveat that the source’s
path through the atmosphere is straight.

The equations for α can be easily modified to calculate the
line-of-sight integral of absorption, making this method useful
for UV occultations. Having a rapid method of calculating
UV stellar occultation spectral light curves will allow a more
thorough study of the sensitivity of derived temperatures to the
upper boundary conditions.

Finally, the approach outlined here can be applied to any linear
operator acting on a roughly exponential function of radius, such
as atmospheric absorption viewed at a range of emission angles.

This research was initially motivated by Uranian occultation
data provided by Richard French, who also contributed to the
original, large-planet formulation of this method. Discussions
with Edward Dunham helped with make this applicable to
small planets. The flow of this paper was greatly improved by
discussions with Eliot Young, Marc Buie, and Catherine Olkin.
This research was supported, in part, by NASA grant NNG-
05GF05G,

APPENDIX

SERIES FORM OF THE LINE-OF-SIGHT INTEGRAL OF
REFRACTIVITY

The derivation of the series approximation to the line-of-sight
integral of refractivity (α) follows that of Elliot & Young 1992
(EY92). For this Appendix, I use the terminology from EY92,
which differs slightly from the terminology used in the body of
the paper.

Given temperature and molecular weight profiles written as

μ = μ0(r/r0)−a (A1)

and
T = T0(r/r0)b (A2)

from which λg, the ratio of radius to scale height, is

λg(r) = λg0(r/r0)−(1+a+b) (A3)

and the refractivity is

ν(r) = ν0

(
r

r0

)−b

exp

(
λg(r) − λg0

1 + a + b

)
. (A4)

I use the same geometry as in EY92, where x is the coordinate
that lies along the path of the ray and has its origin at the closest
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approach of the ray to the center of the planet. If r is the radius
at closest approach, and r′ is the radius at x, then

r ′2 = x2 + r2. (A5)

The line-of-sight integral of refractivity is

α(z) =
∫ ∞

−∞
ν(r ′)dx = ν(r)

∫ ∞

−∞

( r

r ′
)b

exp

[
λ(r ′) − λ(r)

1 + a + b

]
dx.

(A6)
I make the same substitution as in EY92 (δ ≡ 1/λg(r)) and

define the same variable of integration, y,

y = (x/r)
√

1/(2δ). (A7)

Equation (A6), expressed in terms of y, is

α(z) = ν(r)
√

2δr

∫ ∞

−∞
(1 + 2δy2)−b/2

× exp

[(
1 + 2δy2

)−(1+a+b)/2 − 1

(1 + a + b) δ

]
dy. (A8)

Expanding the integrand in a series in δ gives

α(z) = ν(r)
√

2δr

∫ ∞

−∞
e−y2

×
{

1 −
[
by2 +

(
3 + a + b

2

)
y4

]
δ

+ O
(
δ2)} dy. (A9)

Using∫ ∞

−∞
yne−y2

dx =
{

Γ ((n + 1)/2) , n even
0 n odd (A10)

and integrating term by term, one gets

α(z) = ν(r)
√

2δrAα(δ, a, b) (A11)

where

Aα(δ, a, b) = 1 +

(
9 + 3a

8
− b

8

)
δ

+

(
345 + 310a + 65a2

128
+

23 + 5a

64
b − 7b2

128

)
δ2

+

(
9555 + 15155a + 7665a2 + 1225a3

1024

+
5455 + 4970a + 1015a2

1024
b +

452 + 35a

1024
b2 − 75

1024
b3

)
δ3

+

(
21

(
65295 + 153204a + 130666a2 + 47764a3 + 6271a4

)
32768

+
21

(
18401 + 29993a + 15482a2 + 2491a3

)
8192

b

+
7
(
35879 + 32778a + 6399a2

)
16384

b2 +
21 (321 − 29a)

8192
b3

− 5509

32768
b4

)
δ4 + · · · . (A12)
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