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Abstract

We present the results of simulations of the late stages of terrestrial planet

formation under the gravitational influence of 6 different outer giant planetary

systems with a wide range of dynamical characteristics. Our goal is to determine

the role that the giant planets play in determining the number, mass and orbital

characteristics of the resulting terrestrial planets and their general potential for

habitability. Each of the giant planet systems affects the embryos in its own unique

way. However, we find that the most profound effects are secular in nature. We

also discovered that dynamical excitation of the embryos by the giant planets in

one region can be transferred into another on short timescales via what we call

secular conduction. Despite large differences in the behaviors of our systems, we

have found general trends that seem to apply. The number, mass, and the location

of the terrestrial planets are directly related to the amount of dynamical excitation

experienced by the planetary embryos near 1 AU . In general, if the embryos’

eccentricities are large each is crossing the orbits of a larger fraction of its cohorts,

which leads to a fewer number of more massive planets. In addition, embryos tend

to collide with objects near their periastron. Thus, in systems where the embryos’

eccentricities are large, planets tend to form close to the central star.

Keywords: solar system: formation — planets and satellites: formation
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I. Introduction

Within the last decade, the study of extra-solar planetary systems has moved

from the realm of science fiction to the realm of science fact. Radial velocity surveys

have discovered, and are continuing to discover, dozens of planets in orbits about

stars other than the Sun (see Butler et al. 2002 and Marcy, Mayor & Cochran 2000

for reviews). Although currently limited to gas giant planets, technologies are in

development that may soon allow for the discovery and study of Earth-like bodies

(some examples are Kepler, and Terrestrial Planet Finder or TPF). Thus, we believe

that the time is ripe for studies of the formation of terrestrial planets in extra-solar

planetary systems. Our aim is not only to predict and understand what may be

found by these programs, but to perhaps aid in the selection of target stars.

The nearly circular, coplanar orbits of the planets in our Solar System

strongly suggest that planetary formation occurred in a disk revolving about a

star. Following the collapse of the solar nebula to this disk, the modern paradigm

envisages four major phases of terrestrial planet formation (eg. Greenberg et

al. 1978; Wetherill & Stewart 1993; Lissauer & Stewart 1993; Weidenschilling &

Cuzzi 1993). First, refractory planetesimals formed from the condensed material

in the disk. As the planetesimal population developed, the second stage began

and planetary embryos formed via the accretion of these planetesimals in a process

known as run-away growth. The second phase is thought to continue until the

planetary embryos grew large enough to gravitationally perturb one another and

excite their eccentricities, e (Kokubo & Ida 1998). During this oligarchic growth

phase there was a balance between dynamical excitation of the embryos by each

other and dynamical damping due a background population of small bodies.

However, eventually most of the the small bodies were acreted or removed and the

orbits of te embryos began to cross. At this time, according to the standard picture,

collisions between the planetary embryos allowed larger objects to form (Wetherill
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1986; 1996; Agnor et al. 1999). This process continued until all of the available

planetesimals in each region were either accreted into larger objects, or dynamically

removed. As a corollary, the resulting configuration of planetary embryos that was

achieved from this accumulation epoch must have reached a dynamically stable (or

nearly so) configuration.

There are many variables that can help define what a terrestrial planetary

system will look like. Some of these include the mass of the star, the mass and radial

distribution of the proto-planetary disk, the disk metalicity, the gas disk lifetimes,

the giant planets, and stochastic events. Wetherill (1996) performed a preliminary

study of these issues. He found that the mass of the terrestrial planets is primarily

determined by the surface density of solid material in the proto-planetary disk,

while the location of the terrestrial planets is primarily determined by the giant

planet system. As we will describe detail below, of the important variables that

affect terrestrial planet formation, the role of giant planets is probably the least

understood. Thus, we concentrate on this particular issue.

Although limited in some respects, Wetherill (1996) showed that the dynamical

structure of the outer giant planets can play an important role in determining the

the structure of the terrestrial planet system. In particular, he showed that giant

planets control the final masses of planets in the Habitable Zones[1] (hereafter HZs)

of stars. Three sets of runs were performed using initial conditions consisting of a

few hundred ∼ 1026 g planetary embryos between 0.5-3.8 AU. In the first, Jupiter

was moved to 10 AU and terrestrial planets formed in the HZ that were typically

a factor of 2 more massive than the Earth. In the second set of runs, Jupiter was

[1]
We follow Kasting et al. (1993), who defines the Habitable Zone as the region around a star in

which an Earth-like planet (similar mass and composition) can sustain liquid water on its surface.

This zone extends from ∼ 0.82 to 1.4 AU around a star like the Sun.
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included at its current location. In this case, systems similar to the solar system

were formed. In the third set of runs, Jupiter was placed at 3.5 AU . In these runs,

the terrestrial planets that formed in the HZs were typically 50% of the mass of

the Earth. In these systems perturbations from the giant planets resulted in the

complete removal of planetary embryos exterior to 1.3 AU, which could imply that

the asteroid belt also extended into 1.3 AU in these systems. (The inner edge of

the asteroid belt in the solar system is at ∼ 2.1 AU .) In addition, it is possible to

imagine a system in which the giant planets prevent terrestrial planets from forming

at all in the HZ. (Indeed, this appears to be the case for the planetary system around

47 UMa, see below). In this case, there could be an asteroid belt in this region.

The Monte Carlo algorithm used in Wetherill’s simulations has been used to

make important contributions to the field of planet formation (e.g. Wetherill 1990,

1992, 1994a). However, to economically model the dynamical evolution of a system

of embryos it approximates their interactions as uncorrelated two-body scattering

events and does not include long-range gravitational forces between bodies. Of

particular importance, the Monte Carlo algorithm does not directly include secular

effects or the effects of mean motion resonances between the planets, which can be

important in planetary systems. Wetherill did attempt to include the important

mean motion resonances with Jupiter and the ν6 secular resonances by employing

an empirical approximation of their effects. However, it is not clear if his algorithms

were sufficiently accurate and he was unable to include either the more subtle

resonant effects of the giant planets, or the long-range effects of the embryos

themselves. Fortunately, new and very efficient direct integration methods are

now available that can perform this type of simulation without these limitations

(Duncan et al. 1998; Chambers 1999; Levison & Duncan 2000).

Another limitation of Wetherill’s simulations is that at the time they were

performed there was no information on the structure of giant planets in extra-solar
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systems. This work predates the discovery of extra-solar planets from radial velocity

surveys (see Butler et al. 2002 and Marcy, Mayor & Cochran 2000 for reviews) and

modern attempts to model the diversity of possible giant planet systems (Levison

et al. 1998). As a result, Wetherill restricted his study to the Solar System’s giant

planets and moved the position of Jupiter and sometimes Saturn in order to mimic

the effects of different giant planet systems.

The only simulations of which we are aware of the formation of terrestrial

planets in a extra-solar giant planet system is a recent study of the planetary system

around 47 UMa (Laughlin et al. 2002). We currently know of two giant planets in

this system: one at ∼ 2.1AU with a mass of 2.5 Jupiter-masses (assuming sin (i) = 1)

and the other at sim3.7AU with a mass of 0.76 Jupiter-masses. Laughlin et

al. (2002) studied the evolution of a series of planetary embryos initially spread from

0.3 to 2.0AU under the gravitational effects of the known giant planets (assuming

sin (i) = 1) and found that no accretion occurred beyond ∼ 0.7AU from the central

star, which includes the star’s HZ. These authors therefore concluded that this

system is unlikely to contain habitable terrestrial planets. This study supports the

basic hypothesis of this paper, that the giant planets in a system play an important

role in determining structure of the terrestrial planets in a system.

Given the above discussion, we feel it is appropriate to revisit the issue of the

role of giant planets on the formation of terrestrial planets in a systematic (or nearly

so) way. In this paper we present the results of a series of dynamical integrations of

the final stages of terrestrial planet formation under the gravitational influence of

differing giant planet systems. We assume that all the stars are the same mass as

the Sun and that the proto-planetary nebula was the same as it is believed to have

been in our Solar System (see Wetherill 1996 for a discussion). In §2 we discuss

the initial conditions and numerical methods. In §3 we present the results of the

simulations. In §4 we summarize and present our conclusions.
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II. Numerical Methods and Initial Conditions

In this section we describe the methods used to construct our terrestrial planet

systems. The first issue to discuss is which giant planet systems to employ in our

simulations. Since the initial survey of Wetherill (1996), dozens of giant planets

have been discovered orbiting other stars (see Butler et al. 2002 and Marcy, Mayor

& Cochran 2000 for reviews). Although such a discovery was anticipated, the nature

of the systems discovered came as a complete surprise. In particular, their orbital

characteristics are quite different from what was expected from studying the giant

planets in our own Solar System. Semi-major (a) axes have been found as small as

0.038 AU (HD83443; Mayor et al. 2002), eccentricities have been found as large as

0.93 (HD80606; Naef et al. 2001), and some planets have been found locked in mean

motion resonances with one another (Gliese 876; Marcy et al. 2001). It should be

noted that the current observational selection effects of the radial velocity technique

restrict it to discovering Jupiter- or Saturn-mass objects close to their parent stars

and that planets have only been found orbiting a few percent of the stars studied.

In addition, the sample of known extra-solar planets may be contaminated by

face-on binary stars (Stepinski & Black 2000). Therefore, although these startling

discoveries have taught us that planetary systems can be very different from the

Solar System, the searches for extra-solar planets have yet to reveal anything about

what ‘typical systems’ are like.

In order to better understand the range of dynamically long-lived giant-planet

systems, Levison et al. (1998, hereafter LLD98) presented the results of a set of

bottom-up numerical simulations designed to generate dynamically plausible giant

planet systems from a large number of planetary embryos. These simulations

produced systems that are stable for at least for a billion years and which exhibit

a wide range of characteristics[2]. Some of these systems are reminiscent of the

[2]
It should be noted that LLD98 were forced to employ some methods that were clearly unphysical
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outer solar system. The number of planets ranged from one to seven. Many

systems contained only Uranus-mass objects. LLD98 constructed systems that were

more ‘compact’ than the outer solar system and systems that were much sparser,

with planets on very eccentric orbits[3]. In all 27 different giant planet systems

were constructed and studied. A complete list and description can be found at

www.journals.uchicago.edu/AJ/journal/issues/v116n4/980173/980173.appx/index.html.

We employ the results of some of LLD98’s simulations in this work. In

particular we chose 6 different giant planet systems for our simulations:

NOPL) No giant planets at all. This is used mainly as a control study. By comparing

the results of this study to those with giant planets, we can determine how a

giant planet system affects the dynamics of the terrestrial planet embryos.

SS) The giant planets in our Solar System (Jupiter, Saturn, Uranus, and Neptune).

II) LLD98’s Run 11a, which is the most compact system they constructed. This

system consists of 5 giant planets. There are 3 very massive planets (totaling 8

times the mass of Jupiter) in the region where Jupiter and Saturn reside in our

solar system. It has a 1:2 mean motion resonance between the two innermost

planets. The resonance has a small libration amplitude of ∼ 15◦ which implies

that the two planets are deeply embedded in this resonance.

III) LLD98’s Run 14a, which has the largest number of giant planets. This system

has a total of 7 Neptune-mass planets. It may be indicative of the types of

systems that form when the gas part of the proto-planetary nebula disperses

before the planets grow large enough to accrete H/He envelopes.

and thus their techniques were not the same as those that the universe uses to build giant planets.

However, their goal was not to model planetary formation as such, but only to construct a wide

range of dynamically plausible synthetic solar systems.

[3]
See LLD98 for a precise definition of compactness.
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IV) LLD98’s Run 4a. This system contains 3 Saturn-mass planets on orbits that are

significantly more eccentric than the giant planet orbits in our Solar System,

but are similar to some of the multi-planet extra-solar systems. The two

innermost planets in this system are close to, but not in, the 1:2 mean motion

resonance.

V) LLD98’s Run 12b. This system consists of a single Jupiter-mass planet on a

very eccentric orbit. It has a semi-major axis of 17 AU and an eccentricity of

∼ 0.8, which leads to a perihelion distance of 3.7 AU. This system is the result

of a global instability of a 7 planet system, where many of the planets had

masses similar to Jupiter and Saturn. The time evolution of this system is

shown in Figure 3 in LLD98[4].

Diagrams of these systems are presented in Figure 1 and they are described in detail

in Table 1. It is important to note that the inclinations reported in the table are

with respect to the initial invariable plane (hereafter IIP) of the planetary embryos

from which the giant planets form. Since mass and angular momentum was lost

during the giant planet formation due to ejections and planets hitting the central

stars, the invariable plane of the resulting giant planet system may not be the same

as the original. The differences are usually small. However, it should be noted that

the sole planet in System V has an inclination of 22◦.

Our simulations began with initial conditions that are broadly consistent with

the runaway growth of lunar- to Mars-sized planetary embryos and the subsequent

[4]
One interesting aspect of this system is that several of the giant planets hit the Sun during the

most violent parts of the instability. This could have disrupted the proto-planetary disk in the

inner system making terrestrial planet formation impossible. Nonetheless, we adopt this system

for completeness since it could be possible for such a system to have formed without disrupting

terrestrial planet region.
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sweep up of smaller planetesimals. These processes could have occurred in as

little as ∼ 105 (e.g. Wetherill & Stewart 1993) and ∼ 106 years (Weidenschilling

et al. 1997) respectively. Since we are primarily concerned with the effect of

gravitational perturbations from the giant planets on the formation of the terrestrial

planets, we have excluded any interactions that may have competed with velocity

excitation from the outer planets (e.g. dynamical friction with a swarm of smaller

planetesimals (Wetherill and Stewart 1993), and/or eccentricity damping via density

wave torques in a remnant of the gas disk (Agnor & Ward 2002)). Accretion

models using similar simplifications have been generally successful at describing

the formation of the terrestrial planets in our own solar system (e.g. Wetherill

1990, Agnor et al. 1999, Chambers 2001).

We started our simulations with 100, m = 0.04M⊕ planetary embryos between

0.5 and 3.0 AU. These embryos were distributed such that their surface density

varied as r−3/2 and had a value of 8.0 g/cm2 at 1 AU. This results in an initial

spacing of the embryos in semi-major axes (a) that was roughly 5rH , where

rH = a (M/3M�)
1/3

. Our initial conditions are comparable to minimum mass

nebular models with 2 M⊕ interior to 1.5 AU (see e.g. Weidenschilling 1977). Our

choice of the inner edge of the proto-planetary disk was dictated by practical

considerations because this choice determines the timestep of the simulations and

thus the amount of CPU time required. Each embryo had a density of 3 g/cm3.

We randomly chose the initial Hill eccentricity, eH , of an embryo from a uniform

distribution between 0.5 and 5, where eH = e × (a/rH). The initial inclination

of each embryo was set to half its initial eccentricity. Since we intended for the

terrestrial planets to be built from the same disk that formed the giant planets, we

took these inclinations to be with respect to the IIP. An embryo’s mean anomaly,

periapse, and ascending node were selected randomly. We performed 4 simulations

in each of the giant planet systems in Table 1. Each of these had identical initial
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conditions except for a different random number seed. An example of the initial

conditions for the embryos in one of our runs is shown in Figure 2.

The orbits of the embryos and giant planets were integrated using a full N-body,

symplectic algorithm known as SyMBA (Duncan et al. 1998) modified to handle

small perihelion passages (Levison & Duncan 2000). This code has the speed of the

highly efficient computer algorithm developed by Wisdom & Holman (1991), but in

addition it can accurately handle close encounters between objects. We employed a

timestep of 0.015 yr and, unless otherwise noted, the simulations were integrated for

a total of 2× 108 years. The simulations were performed in a gas-free environment.

The fact that for large numbers of bodies the computational cost of our

calculation scales as N2 (where N is the number of bodies followed), places a

practical constraint on the number of bodies which can be used. For this reason,

we did not include any residual population of smaller planetesimals left over from

the runaway and post-runaway stages of embryo growth in our simulations. Also,

collisional fragmentation of embryos was not included, since any process which

would tend to increase the number of bodies in a simulation is not computationally

feasible. In these simulations, when two embryos collided they were merged

inelastically. The radius of the new body was computed by adding the volumes of

the colliding bodies and assuming uniform density and spherical shape for the new

combined body. The orbit of the new body was calculated assuming conservation

of momentum.
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III. Results

The analysis of our simulations proceeds as follow. In §3.1 we describe the final

terrestrial planet systems, while concentrating on the systematic variations found

in the different giant planet systems. In §3.2 we investigate the differences in the

dynamics of the embryos that lead to these systematic variations. Finally, in §3.3

we describe the different dynamical mechanisms through which the giant planet

systems affect the orbital evolution of embryos.

3.1 The final terrestrial planet systems

As we mentioned above, we constructed 4 terrestrial planet systems in each

of the giant planet configurations described in Figure 1 and Table 1. Our final

synthetic terrestrial planet systems are compared to the real terrestrial planets in

Figure 3. In these figures the positions of a circle along the abscissa indicates the

planet’s semi-major axis. The size of the circle indicates the planetary mass. In

addition, the mass of the planet, in Earth masses, is printed above each planet.

The markings beneath each planet indicate the range of distances from the planet’s

central star (periastron and apastron) with the central vertical line indicating the

semi-major axis.

Figure 3B shows the systems that form when there were no giant planets. Note

that in these systems accretion is not yet complete after 2 × 108 yr as indicated by

objects on crossing orbits. Indeed, this figure is somewhat misleading since only

those planets with semi-major axes less than 2.5 AU are plotted. At 2 × 108 years,

these systems still contain between 23 and 29 objects. Thus as an illustration, in

Figure 4 we plot the semi-major axis and eccentricity of all the bodies in the upper

system in Figure 3B. Although this system contains 24 objects at 2×108 years (top

of Figure 4), the planets inside of ∼ 2 AU are almost fully formed. The small bodies

that remain are external to the large terrestrial planets and were scattered out to
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their current orbits by their larger siblings. This is true for all 4 of the systems in

Figure 3B.

In order to determine the fate of the small objects beyond 2 AU, we extended

the integration of the system in Figure 4 to a billion years. The resulting system

is shown in the bottom panel of the figure. We see that the disk of small objects

continues to spread to larger semi-major axes. A 1
2
M⊕ planet formed at ∼ 4.3 AU.

This is well beyond the outer edge of the original proto-planetary disk and thus is

a result of collisions that occurred between objects that formed closer to the star.

In addition, the large planets within 2 AU are still accreting — for example, the

0.8 M⊕ planet accreted a small object at 875 Myr. Indeed, most likely all the small

objects in all these systems will be accreted before they are ejected, but this process

could take tens of billions of years (Tremaine 1990).

Figure 3C shows the results of the four simulations done under the influence of

the giant planets in the Solar System. Since this problem has been studied in great

detail by other authors (Wetherill 1986; 1994b; Chambers & Wetherill 1998; Agnor

et al. 1999 Chambers 2000; 2001), we only briefly discuss it. These simulations

can can be compared with Figure 3A which shows the real terrestrial planets in the

same manner. The agreement is quite good. Our simulations usually produce 2 large

terrestrial planets with masses and locations similar to Earth and Venus. However,

planets near 1.5 AU tend to be more massive than Mars and the eccentricities of

the larger planets (∼ 1M⊕) are larger than those observed for Earth and Venus.

This result is consistent with previous attempts at the same problem (Chambers &

Wetherill 1998; Agnor et al. 1999). It is not clear why these differences occur and

thus this is an area of active research (for example see Agnor & Ward 2002).

Comparison between these systems and those that formed in the absence of

giant planets (Figure 3B) show important similarities and important differences.

Unlike the systems in Figure 3B, those that formed in the presence of the giant
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planets do not have large planets beyond roughly 1.5 AU. However, interior to

∼ 1.5 AU the mass, semi-major axes, and eccentricities of the terrestrial planets

are remarkably similar. This implies, and we argue this in more detail below, that

the giant planets in the Solar System did not play an important role in the terrestrial

formation process interior to Mars’s orbit.

The terrestrial planets that formed under the influence of the giant planet

system II (Figure 3D) show two distinct differences from those in Figure 3C. First,

there are no large terrestrial planets outside of 1 AU. Second, the largest terrestrial

planets in these runs are typically more massive than those that formed under the

influence of giant planets in the Solar System.

The terrestrial planet systems that formed under the influence of the giant

planet system III with 7 small giant planets (Figure 3E) are remarkably similar

to those that formed under the Solar System’s giant planets. The only significant

difference is that planets interior to 1 AU are slightly larger. One the other hand,

the results of the simulations done under the influence of the giant planet system

with 3 eccentric Saturn-mass giant planets (System IV ) are remarkably different

from those that formed in the other outer planetary systems so far discussed in that

no large planet forms outside of ∼ 0.8 AU (Figure 3F). Finally, the system with one

large very eccentric giant planet (System V ) produced terrestrial planets that are

the most different from those in Figure 3C. These systems tend to have smaller

planets close to the star (Figure 3G).

Although the above results clearly show that the giant planet system can play

an important role in determine the size and location of the terrestrial planets, it

is interesting to note that ‘habitable’ planets formed in each of our giant planet

systems. Here we are defining a ‘habitable’ planet as one that lies in the HZ of

a star (Kasting et al. 1993, see above) and is large enough to be able to support
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an Earth-like environment[5]. Williams et al. (1997) suggest that the most severe

constraint on habitability is the planet’s ability to support a carbonate-silicate cycle

that serves to regulate the CO2 levels in the atmosphere. This cycle requires plate

tectonics, or simular process, which removes CO2 from carbonate sediments and

returns it to the atmosphere. Williams et al. (1997) argue that a planet’s mass

must be ∼> 0.23 M⊕ for its surface to volume ratio to be small enough so that

radiogenic heating can support plate tectonics.

Every one of our giant planet systems produced at least one planet in the HZ

more massive than ∼ 0.23 M⊕. However, not all runs did so. The runs with no

giant planets always produced a planet this massive in the HZ. The System SS runs

produced such a planet in 3 out of 4 simulations. Indeed, in the last run, a 1.2 M⊕

planet formed with a = 1.41 AU, which is just outside the HZ. System III produced

a M ∼> 0.23 M⊕ planet in the HZ in half of the simulations. Finally, the remaining

giant planet systems produced such a planet in one quarter of the simulations.

Therefore, the architecture of the giant planets can significantly affect the

chances of finding a large planet in the HZ. This result can be used to help develop

a target list for spacecraft like the TPF. Giant planets are usually much easier to

detect than Earth-mass objects. Since the structure of the giant planet systems can

be used to constrain the existence of habitable terrestrial planets, it may be more

efficient to search for the giant planets in a system before expending the resources

to search for the terrestrial planets.

With this in mind, we examine our simulation results and attempt to identify

systematic differences between the terrestrial planets in different giant planet

systems we investigated (which hopefully can be applied to other systems as well).

[5]
Certainly, there are other environmental issues that affect habitability, for example sources of

volatiles and impact rates. This issue will be addressed in future papers.
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We find two major systematic differences: 1) the masses of the largest planets, and

2) the location of the planets. It is possible to quantify these differences. We have

found that the best measure of location is the mass weighted semi-major axis of

the terrestrial planets (〈a〉) [6], while the best measure of mass is the mass of the

largest planet (Mmax). Thus in Figure 5 we plot the ranges of these values for each

set of runs in the various giant planet systems.

We start our interpretation of Figure 5 by noting a significant correlation

between Mmax and 〈a〉 for those systems with 〈a〉 ∼> 0.6 AU. The most natural

explanation for this correlation is that the giant planets are somehow transporting

proto-planetary disk material inward which increases the amount of material close

to the star, allowing larger planets to form. We describe the physical mechanisms

that control this behavior in the next subsection.

The fact that the two systems with 〈a〉 ∼< 0.6 AU have smaller Mmax than

predicted from an extrapolation of the above correlation is the result of impacts

with the star. For example, an average of 16% of the embryos in the System SS runs

hit the central star (which we set to the radius of the Sun), while this value is 46%

and 68% for the System IV and System V runs, respectively. These two systems

are clearly more effective at moving material inward than the other giant planet

systems. We note that massive terrestrial planets do not form inside of 0.5 AU. The

most likely explanation is that this is a result of our placement of the inner edge

of the initial proto-planetary disk at 0.5 AU. In these cases, material delivered to

regions interior to 0.5 AU find that there is nothing to collide with. Rather than

forming a planet, the material is driven into the star. Thus, we believe that if we

[6]
This is calculated using only those objects that are not on giant planet-crossing orbits and those

objects that have suffered at least two mergers. The latter constraint was added to remove the low

mass, objects scattered outward in the NOPL runs.
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had disks that extended inward of 0.5 AU, we would most likely be forming massive

terrestrial planets in these regions in the System IV and System V runs.

However, even if the disk extended all the way to the star, we would not expect

the trend of increasing Mmax with decreasing 〈a〉 to also extend all the way in for

two reasons. First, it is easier to drive embryos with small semi-major axes into

the star than ones with large semi-major axes and so regions of the disk close to

the star will still become depleted of material. Second, collisional fragmentation

will most likely be more severe close to the star because of higher orbital velocities

(Wetherill 1988) and thus more mass will be lost to collisional cascade.

3.2 The role of dynamical excitation in terrestrial planet formation

The correlation between Mmax and 〈a〉 seen in Figure 5 is the primary result

of this investigation and is a prediction of what we expect to see in extra-solar

terrestrial planetary systems. In this subsection, we investigate the mechanisms

that create this relationship. Since the embryos that form the terrestrial planets

only interact with the giant planets through long-range gravitational forces, it is

most natural to first investigate the initial dynamical evolution of the embryos in

the different giant planet systems.

As a measure of the dynamical excitation of the embryos in a system, we use

the mass-weighted RMS eccentricity of all embryos with 0.9 < a < 1.5 AU, e?,

calculated 107 years into the simulation[7]. We chose this range of semi-major axis

because this is the region where we see the largest systematic difference in the

final masses and locations of the terrestrial planets and because it is near the HZ.

[7]
A note on notation. e?

is specifically defined to be the RMS eccentricity between 0.9 and 1.5 AU.

We use 〈e2〉 and eRMS to refer to the mean square eccentricity and root mean square eccentricity,

respectively, at arbitrary locations.
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Hereafter, we refer to the 0.9 < a < 1.5 AU region as the study zone or SZ. We chose

107 years as our standard time because it is long compared to the important secular

periods in the giant planet systems, so the giant planets have time to affect the

embryos, and yet it is short compared to the amount of time its takes a significant

terretrial planet to grow and start to dominate the embryos’ dynamics.

Each symbol in Figure 6 shows the range of 〈a〉 and e?(107) for the runs from

one of our giant planet systems. There is a strong correlation between the dynamical

excitation in the SZ and the mass of the largest terrestrial planet. Combining this

result with the results in Figure 5, we find an additional correlation between Mmax

and e?. We interpret these relationships as indicating that the dynamical excitation

of embryos near 1AU results in the inward transport of material and thus larger

planets closer to the star.

Here is how the process works. As the eccentricities of the embryos increase,

their radial excursions also increase. That is, they travel over a larger fraction of

the disk. As a result, the number of potential merger partners also increases. This

can be seen in the top two panels of Figure 7 which shows the semi-major axes and

eccentricity of embryos from a run in System NOPL on the left and System II on

the right. In these panels, the horizontal bars mark the range of radial excursions

for each of the embryos. Notice that the embryos in the System II run are more

excited (i.e. have higher eccentricities) than those in the System NOPL run and

thus have larger radial excursions.

How is accretion in our simulations influenced by these large eccentricities? To

address this issue, the bottom two panels in Figure 7 show the probability per year

that a target body in each simulation will collide with each of its neighbors. The

impact probability rates were calculated using the method of Bottke et al. (1994),

which is based on the formalism of Öpik (1951) and can handle eccentric targets.

The characteristics of the target were determined by taking the average of all
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embryos in the SZ. For the simulation in System NOPL, the eccentricity of the

target is 0.15, while it is 0.24 in the System II run.

In both simulations, the target bodies are roughly 10 times more likely to

collide with an object at its periastron than one at its apastron. This is simply a

result of geometry. When two objects are at the same distance from the star, r,

(so they can collide) their impact probability is proportional to the ratio of their

mutual collisional cross-section to the surface area of a sphere of radius r. Thus, in

the regime where gravitational focusing is not important (which is true here) and

embryos are approximately the same size everywhere, the impact probability should

∝ r−2, which is roughly what we observe in Figure 7.

We can now put all of our results together to explain the correlation in Figure 5.

Different giant planet systems dynamically excite the eccentricities of the terrestrial

embryos by differing amounts. Embryos in systems with large eccentricities are

on orbits that cross a larger fraction of their peers than in systems with small

eccentricities. The large eccentricities make it difficult for the growing planets to

become isolated from one another, which leads to fewer and more massive terrestrial

planets[8]. This relationship is true unless the giant planets can drive embryos into

the central star (as with Systems IV and V). However, once excited an embryo

is much more likely to collide with an object near its periastron distance than

elsewhere in its orbit. So, if the system of embryos is excited, planets are more

likely to form near the inner edge of the disk. Putting the arguments together, in

systems where the giant planets can significantly excite the embryos, we tend to

build more massive planets closer to the center star.

[8]
Recall that we do not include fragmentation in our simulations. Fragmentation could somewhat

inhibit planetary growth in dynamically excited systems.
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3.3 Excitation Mechanisms

In the last subsection we demonstrated how dynamical excitation of the

terrestrial embryos by the giant planets (as measured by the value of e? at 107 years)

can lead to changes in the location and masses of the final terrestrial planets. We

now investigate the various dynamical mechanisms employed by the giant planets

to excite the embryos. Again, for the reasons discussed above, we concentrate on

the SZ region.

Figure 8 shows the average e? for our runs in each of our giant planet systems.

To generate each panel, we first plotted the run with no giant planets (NOPL) in

orange and then superimposed the run of the giant planet system of interest (marked

in the upper left) in black. As a result, is it trivial to observe the differences that

the inclusion of the the giant planets has on the behavior of each system. In order

to minimize small number statistics, we took the average of all 4 runs in each giant

planet system to generate each curve.

Before we discuss the systems with giant planets, it is useful to understand

the behavior of the NOPL system. The initial conditions for the embryos were

such that they crossed each other’s orbits. As a result, the initial evolution of the

system is dominated by close encounters between the embryos. Figure 8A shows a

logarithmic growth in e?. This is caused by gravitational interactions of the embryos

which spread the disk and increase eccentricities.

We analytically estimate the growth rate of the mean square eccentricity (〈e2〉)
using the the results of Stewart & Ida (2000). Scattering events redirect the velocity

of an embryo converting orbital motion into random motion. The general effect is

to excite the orbital eccentricities of the embryos. The excitation rate of the mean

square eccentricity due to self-stirring of the swarm is

d〈e2〉
dt

=
n

π1/2

(

σa2

M�

)

M

M�

BJe

〈e2〉 , (1)
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where Je is an integral function of the ratio between the inclinations and

eccentricities, n is the mean motion, σ is the surface density of embryos and B

is a logarithmic function of the embryo masses (M) and eccentricities (Stewart and

Ida 2000). For the systems of embryos considered here these functions are effectively

constants taking the values Je ≈ 2, B ≈ 25. Expressing this rate as an eccentricity

growth timescale due to close encounters yields

τe =
〈e2〉
d〈e2〉

dt

≈ π1/2

50

(

M�

σa2

) (

M�

M

) 〈e2〉2
n

. (2)

Using in the appropriate values for the our simulations, we find that τe ≈ 3.4 ×
1010 〈e2〉2 yrs. This predicts that 106 years are required for the eccentricity to grow

to 〈e2〉1/2 = 0.07, which is what we observe in Figure 8A.

At some point in the evolution an equilibrium is reached when the excitation

of the embryos due to mutual scattering is balanced by damping due to physical

collisions between embryos (Ward 1993). For a unimodal mass distribution the

equilibrium e? is

e?
equil ≈ 1.8

(

m

M�

)
1

3

(

ρba
3

M�

)

1

6

, (3)

where m is the mass of the embryos and ρb is their bulk density. For our system,

this equation predicts e?
equil ≈ 0.13. Figure 8A confirms this prediction. The system

reaches its steady state at 5×106 years and remains there until 1.7×108 years. The

drop in e? after this time is due to the formation of a large (∼ 0.5M⊕) embryos in

the SZ which subsequently undergoes a decrease in eccentricity due to dynamical

friction with it smaller neighbors. The value of e? decreases because we calculate it

using a mass-weighted average.

We now address the dynamical mechanisms by which the giant planets excite

the embryos in the SZ. We will concentrate on explaining the differences seen in

Figure 8 and address each dynamical mechanism in turn.
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Forced secular motion by the inner giant planet: A massless body that is under

the gravitational influence of a giant planet will undergo oscillations in eccentricity

with an amplitude that is on the order of the eccentricity of the giant planet and

a period that is on the order of its precession period. For example, employing a

standard secular model (see e.g. Brouwer & Clemence 1964) and assuming that the

initial eccentricity of the test particle is zero, the maximum eccentricity that it can

obtain is

emax = 2ep

b
(1)
3/2(α)

b
(2)
3/2(α)

, (4)

where ep is the eccentricity of the giant planet, α is the ratio of the particle’s

semi-major axis (a) to that of the planet (ap), and b
(m)
s are Laplace coefficients.

Note that the maximum eccentricity is a function of semi-major axes.

The time it takes to reach the maximum eccentricity is 2π/g, where g is the

particle’s precession frequency. The same theory used to calculate emax gives

g =
1

4

Mp

M�
α2 n b

(1)
3/2(α), (5)

where Mp is the mass of the planet and n is the mean motion of the particle, and

ap > a.

We find that this mechanism is important in two of our giant planet systems

(III & V). Figure 8D shows a distinct difference between the runs of System III

and those in NOPL at times between ∼ 105 and ∼ 5 × 106 years, with a peak at

roughly 2× 106. For this system Equation (5) predicts that a particle in the middle

of the SZ should have g = 2.5 × 10−6, which implies that particles should reach

their maximum eccentricity at 2.5 × 106 years. Equation (4) predicts a maximum

eccentricity of 0.11. These two values are consistent with the differences between

this System and NOPL. Indeed, Figure 9A shows the averaged e? for the runs

in this System (red curve) (which is simply a reproduction of the black curve in

Figure 8D). The green curve shows the behavior of a massless test particle initially
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on a circular orbit as predicted by the theory of forced secular motion. There is

general agreement between the behavior of the embryos in the simulations (red

curve) and that predicted by the secular theory (green curve).

Perhaps more impressive is the behavior of the embryos under the gravitational

influence of System V. Figure 8E shows that the embryos reach eccentricity ∼ 0.3 in

only a million years! Recall that System V consists of a single Jupiter-mass planet

on an orbit with a semi-major axis of 17 AU and an eccentricity of ∼ 0.8. The large

planet coupled with a very large eccentricity leads to very strong forcing of the

embryos. Figure 9B again shows the behavior of the embryos in this system (red

curve) and that of the massless test particle (green curve). However, the trajectory

of the test particle in this case was determined by direct numerical integrations

since the linear theory described above is no longer valid for planets with such a

large eccentricity.

So, we have found that the forced secular motion caused by the inner giant

planet can play an important role in the dynamics of embryos in our systems.

Indeed, if the mass and eccentricities of the innermost giant planet are large enough

(as in systems III and V) secular forcing can be the dominant excitation mechanism

for planetary embryos in the study zone. In the case of System V, secular forcing

was strong enough to throw 68% of the embryos into the central star, reducing the

efficiency of planet formation and leading to the accretion of only smaller terrestrial

planets close to the inner edge of the embryo disk.

There is one issue that should be discussed before moving on. When attempting

to interpret how orbital dynamics influence accretion, it is quite often assumed that

large eccentricities correspond to large relative (or random) velocities between the

embryos. Relative velocities are important because they effect gravitational focusing

and thus the timescale for accretion. For orbits that are randomly oriented (i.e.
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uniformly distributed in and longitude of periapse, $ and ascending node, Ω),

vx = vc

√

5

8
〈e2〉 +

1

2
〈i2〉,

where vx is the random or relative velocity (Lissauer & Stewart 1993) and vc is the

local circular velocity. However, in many of the mechanisms that we discuss in this

paper, eccentricities and inclinations are forced in such a way that $ and Ω are not

random (i.e. the orbits are aligned). Thus, e and i are no longer a good measure of

relative velocity[9]. This is particularly true of secular forcing.

To ascertain the importance of this behavior in our simulations we calculate vx

in the following way. At particular times during the simulation, we first search for

pairs of objects that are both in the SZ and whose radial excursions overlap (i.e. the

region from periapse to apoapse overlap). For each pair, we identify the locations of

the crossing points, assuming that the orbits are planer[10]. If the orbits intersect,

we calculate the magnitude of the relative velocity at the crossing points. If the

orbits do not intersect (i.e. they are aligned) we set the relative velocity of the pair

to zero. We then calculate the mean relative velocity of all the pairs. Note that if

the orbits are all aligned this value will be zero.

Figure 10 shows a comparison between e? (black) and this mean crossing

velocity, 〈vx〉, (green curve) for one of the runs in System III and one in System V.

The vertical axes of the two curves (e? left and 〈vx〉 right) are scaled so that if

[9]
This issue was studied in detail for small planetesimals in a dense solar nebula by Kortenkamp &

Wetherill (2000). They found an enhancement in the accretion rate over what would be expected

for the observed eccentricities and inclinations due to the alignment of orbits.

[10]
This assumption is required to insure that the orbits cross if they are not aligned. Thus the results

of this calculation should be taken as approximate, but are probably good to better than 10%.
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the orbits are randomly oriented the curves will overlap. We accomplished this by

scaling the crossing velocity by
√

2vc, where vc is the circular velocity in the middle

of the SZ and the
√

2 is to account for the fact that we are averaging over the

magnitude of a 2-dimensional vector.

For both runs shown in Figure 10, we can easily see the role of orbit alignment

at early times. On timescales less than a few million years, the relative velocity

of the embryos is significantly smaller than their eccentricities would predict. This

can have profound effects on the accretion rate of the embryos. This is because the

collisional cross-section, σ, is a strong function of vx, i.e. σ = πR2
(

1 + v2
esc/v2

x

)

,

where R is the physical radius of the embryo, the term between the parentheses is

the so-called gravitational focusing factor, and vesc is the escape velocity between

of the embryos. For example, in our System V runs, there are 15 embryo mergers

between 2× 105 years and 4 × 105 while the orbits are aligned, but only 6 between

5×105 and 7×105. This is true even though the number of embryos only decreases

by ∼ 10% over the same time period. Thus, terrestrial planet accretion will not

necessarily be slowed by large e if encounter velocities remain low due to orbit

alignment.

It should be noted that the orbit alignment helps at the beginning of the

System V simulation as well. As described above, our simulations are assumed to

begin at the end of run-away growth. Thus, we assume that the embryos are fully

formed. This process takes about 105 years (Wetherill & Stewart 1993). If we were

to interpret e? as a measure of relative velocity, then we might conclude that the

embryos never form in the System V runs because the forced eccentricity is large

enough to stifle run-away growth. However, because of orbit alignment, the relative

velocities remain small for over 3×105 years, (a timescale longer than that required

for the run-away growth of our initial embryos.

Thus, we conclude that it important to account for orbit alignment when
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considering the planet formation scenarios (see also Kortenkamp & Wetherill 2000).

It should be noted, however, that orbit alignment does not appear to play an

important role in our other systems where secular forcing is not the primary source

of excitation.

Secular Resonances: Secular resonances are commensurabilites between the

precession rate of embryos and those of the giant planets. The precession rate

of the embryos is determined, for the most part, by the gravitational effects of

the giant planets, so embryos further from the star tend to have faster precession

rates because they are closer to the giant planets. These commensurabilities

facilitate the exchange of orbital angular momentum (but not energy) between

the giant planet system and the embryos. This exchange results in large increases

in embryo eccentricities and/or inclinations without altering their semi-major axes.

Thus, secular resonances can act as a principal dynamical excitation mechanism of

planetary embryos near 1 AU. Here we are interested in mechanisms that increase

the eccentricity of the embryos. Thus, we will start our analysis with the periapse

secular resonances.

In linear secular theory, changes in eccentricity are coupled with the precession

of the the longitude of periapse, $ (Brouwer & Clemence 1964). The apsidal

precession of an N -planet system can be represented by N eigenfrequencies (gj),

where N is the number of planets. In the secular model it is convenient to use

the variables h = e sin $ and k = e cos $ and the Laplace-Lagrange equations of

motion for a small object interior to the planets can be written as

h = µ sin (gt + β) +
N

∑

j=1

µj

g − gj
sin (gt + βj) (6)

k = µ cos (gt + β) +
N

∑

j=1

µj

g − gj
cos (gt + βj),
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where µ and β are derived from the initial conditions, and µj and βj are related to

the masses and orbital elements of the giant planets. The particle’s precession rate

is

g =
n

4

N
∑

j=1

Mj

M�

(

a

aj

)2

b
(1)
3/2,

where n is the mean motion of the particle, and Mj and aj are the mass and

semi-major axis of planet j, respectively (this is just an extension of equation 5 to

an N-planet system). Note that g is an increasing function of a. As g → gj one of

the denominators in the sums in Equation 6 is goes to zero. These are the locations

of periapse secular resonances. Since e =
√

k2 + h2 the eccentricity can reach large

values near the resonances in this theory.

In our Solar System, there are two secular resonances (ν5 and ν6) that can

significantly affect the behavior of the embryos (recall that the embryos are initially

spread between 0.5 and 3 AU). Chambers & Wetherill (1998) noted that these

resonances played a role in some of their simulations. The strongest resonance

is the ν6 where g = g6, which is associated with the precession of Saturn’s

apse. In a system that contains just Jupiter, Saturn, Uranus, Neptune, and test

particles on circular, coplanar orbits, particles near 2.1 AU are in the ν6. However,

in our simulations, the embryos are massive. By itself a massive embryo disk

would cause embedded embryos to undergo apsidal regression (Ward 1981). In

conjunction with the prograde precession due to the outer planets, the disk simply

decreases precession frequencies and thus moves secular resonances outward. We

have estimated the location of the ν6, by calculating the precession frequencies of

the test particles under the gravitational influence of the giant planets and a smooth

disk[11] of 4M⊕ spread from 0.5 to 3 AU. The disk moves the ν6 to ∼ 2.2 AU. The ν5

[11]
This code was kindly supplied to us by Martin Duncan. It calculates the precession rates by

numerically taking derivatives of a potential that is generated by ∼ 104
rings. These rings are
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resonance, which is a commensurability with the frequency associated with Jupiter,

is located at ∼ 0.7 AU if there is no disk and ∼ 1.1 AU in the presence of the disk.

As first noted by Chambers & Wetherill (1998), the effects of the ν6 resonance

can clearly be seen in the behavior of the embryos, while the ν5 is not readily

apparent. For example, in Figure 11 we compare the behavior of the embryos in

our SS simulations to that of test particles. The orbits of the test particles were

integrated under the influence of the 4 giant planets in our Solar System and a 4M⊕

disk with the same surface density distribution as the embryos. The red and green

dots show the eccentricity as a function of semi-major axis of the embryos and test

particles, respectively, at 106 years. The ν6 at 2.2 AU can clearly be seen driving

objects into the central star (e → 1) in both datasets.

The influence of the ν5 resonance is a bit more subtle, if it is important at all.

With the location of this resonance at 1.1 AU, we might expect that it would also

strongly influence embryo dynamics in the SZ. This is indeed the case in the test

particle simulation and the eccentricity forcing due to the ν5 is readily apparent

(see Figure 11). However, this same effect is not obvious as a ‘spike’ in the embryo

eccentricities near 1.1 AU in the SS simulation. Why is this? Does this result imply

that the ν5 is not important to the evolution of the embryos? The essential difference

in the dynamical models of the two simulations is the neglect of close encounters

in the test particle simulation. Perhaps two-body scattering events frustrate the

resonant forcing of embryos by the ν5? To develop this idea further and to estimate

the importance of the ν5, we calculate the timescale for embryos to diffuse across a

secular resonance due to scattering and compare this with the excitation timescale

of a secular resonance to identify the effect that it dominant.

To calculate the time it takes to diffuse across a resonance, we must estimate

the embryo diffusion rate and the resonance width. To estimate the diffusion rate

distributed in accordance with the density distribution of the disk.
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we follow Hayashi et al. (1977), who showed that the RMS change in the semi-major

axis of an object in a swarm of like objects during time t is

〈

(δa)2
〉

= 1.5 a2

(

vrel

vc

)2

κ σevrelt, (7)

where κ is the number density of embryos, vrel is the relative velocity of the embryos,

and vc is the local circular velocity. Hayashi et al. call σe the effective cross section

and define it so that t = 1/κσevrel is the 2-body relaxation time. The cross section

can be expressed as

σe = 6.5πa2

(

m

M�

)2 (

vrel

vc

)−4

ln Γ,

where

Γ =

[

1

2

(

vrel

vc

)2 (

d

a

) (

m

M�

)−1
]

and where m is the embryo mass and d is the inter-particle spacing. The value of

ln Γ is about about 10 for our simulations. The value of κ can be approximated

by ρ/m, where ρ ' Σ/H with Σ being the surface mass density of the disk and

H = a(vrel/vc) being its scale height. We can calculate the crossing time, tx, of the

resonance by setting
√

〈(δa)2〉 to the width of the resonance, ∆res, so that

tx ' 1

30 lnΓ

(

∆res

a

)2 (

M�

Σa2

) (

m

M�

)−1 (

vrel

vc

)2 (

1

n

)

, (8)

which is similar to the viscous spreading timescale of planetary rings (Goldreich &

Tremaine 1978).

We estimate the width of a secular resonance using the following method. Far

from a secular resonance the maximum eccentricity, emax, that an object can obtain

due to forcing by the other planets in the system is generally small and slowly

varying with semi-major axis (a). Here the changes in the minimum periapse

(qmin = a(1 − emax)) and maximum apoapse distances (Qmax = a(1 + emax))
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with semi-major axis are dominated by changes in semi-major axis rather than by

changes in the forced eccentricity and dqmin/da, dQmax/da > 0. As the semi-major

axis of the resonance is approached the amplitude of the forced eccentricity increases

and diverges at a = ares. Consequently near the resonance changes in qmin and

Qmax with semi-major axis are dominated by changes in the emax rather than by

changes in a. As a secular resonance is approached from the interior (a− → ares) at

some point the minimum periapse distance due to forced motion begins to decrease

with increasing semi-major axis (i.e. dqmin/da < 0). Similarly as the resonance is

approached from the exterior (a+ → ares) the maximum apoapse distance begins

to increase as a decreases. Thus, the resonance strongly affects the eccentricity

of an object in the region between the turning points dqmin/da = 0 interior and

dQmax/da = 0 exterior to the resonance. Following Ward et al. (1976), we use

the distance between these two points as an effective width of the resonance. To

determine the location of the secular resonances and their widths in the giant planet

systems studied we have computed the secular Laplace-Lagrange solution of each

giant planet system studied and identified the secular resonances that are located

interior to the giant planets. The forced eccentricity was computed as a function of

semi-major axis and widths of the secular resonances (∆res) were determined using

the criteria described above. We find that ∆res = 0.08 AU and 0.2 AU for the ν5

and ν6 secular resonances, respectively.

With these numbers we can calculate tx using Equation (8). In order to do

this, we must use a system where the resonances have not affected the dynamics of

the system. Thus, we will adopt for this purpose the state of the NOPL runs at

t = 106 years. For this system, we find that tx = 2.3 × 105 years near ν6 resonance

and tx = 4.0 × 105 years at the ν5.

Now we must calculate the timescale for exciting eccentricities by the resonance,

tr. In general this timescale is going to be roughly 2π/gj, however, we have found
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that this estimate is not accurate enough for our purposes. Here we evaluate

the timescale for exciting eccentricities by a secular resonance using a numerical

approach. We define tr ≡ e0/ė, where e0 is some fiducial eccentricity and ė is the

time derivative of the eccentricity. Since we are interested in situations where secular

resonances can excite eccentricities larger than the local background eccentricity,

we set e0 to the eccentricity the NOPL runs at t = 106 years (0.07), as above.

We determine ė through numerical integrations of test particles in the resonances.

In particular, we set ė = ∆e/τ , where ∆e is the maximum change observed in a

large number of test particles spread throughout the resonance in a τ = 106 year

integration. We found that ė = 1.7 × 10−6 yr−1 in the ν6 and ė = 1.5 × 10−7 yr−1

in the ν5. From this, we can estimate that tr = 4.1× 104 years and 4.7× 105 years

for the ν6 and ν5, respectively.

We can use tr and tx to understand the differences between the behavior of

embryos at the ν5 and ν6. In the case of the ν5 tr/tx = 1.2 and thus the embryos

cross the resonance before they can be significantly excited. On the other hand,

tr/tx = 0.2 in the ν6 giving the resonance plenty of time to excite the eccentricities

of the embryos to large values.

However, the fact that we cannot see the effects of the ν5 on in Figure 11, does

not imply that it is not affecting the system. Indeed, the differences between the

temporal evolution of e? in the NOPL system and the SS system (see Figure 8B)

are due to the effects of the ν5. This conclusion can be shown with the following

simple argument.

The angular momentum of an embryo is Le = M
√

GM�a(1 − e2). Thus

the rate of change of the angular momentum due to an embryo in the ν5 secular

resonance is

L̇e = −M

√

GM�a

(1 − e2)
ė2.

The total change in angular momentum of the system in time τ is simply ∆L =
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M Nres L̇e τ , where Nres is the number of embryos in the resonance which is

2 π µ ares ∆res. Here µ is the number surface density of embryos, ares is the location

of the resonance and ∆res is the resonance width. Similarly, the total angular

momentum of the material in the SZ is

LSZ = 2 π M µ aSZ ∆aSZ

√

GM�a(1 − e?2).

Assuming that e? is small and taking into account that the center of the SZ (at

1.3 AU), is near the location of the ν5 resonance (at 1.1 AU), we can show that the

change in the RMS eccentricity in the SZ due to the presence of ν5 is

∆(e?2) ≈ 2
∆res

∆aSZ

ė2

1 − e?2 τ. (9)

Through examination of the behavior of test particles in the ν5 resonance, we

determined that ė2 = 1.1 × 10−8 yrs−1.

We can now calculate what the erms in the SS runs should be if the only

two things exciting eccentricities are internal scattering between embryos and the

ν5 secular resonance. As discussed earlier, at τ = 106 years e? = 0.07 due to

internal scattering (see the discussion following Equation 2). From Equation 9,

∆(e2
rms) = 3.7× 10−3, which implies that in the SS runs e? = 0.09. Examining the

data presented in Figure 11B, we find that e? = 0.10, in good agreement with this

prediction.

Thus, we conclude that the difference in e? between the SS runs and the

NOPL runs is due to the presence of the ν5 secular resonance at 1.1 AU. This

resonance causes the SS runs to be slightly more excited than those of the NOPL

runs. However, even though the difference in e? is measurable for the first few

tens of millions of years into the simulation, it is not large enough to significantly

change the masses and locations of the terrestrial planets inside of ∼ 1.5 AU. An

examination of Figures 3B and 3C shows that the large terrestrial planets are similar

in the two systems.
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We now turn our attention to the other giant planet systems, looking for

systems where periapse secular resonances play a more important role in the SZ.

The only other strong secular resonance that falls in the region covered by the

embryos is in System II and is at 2.4 AU. By strong we mean it can significantly

affect the orbits of test particles over 107 years. There was one other very strong

secular resonance in System IV that without the self gravity of the embryos would

have been located at 2.4 AU, but moves beyond the embryos if the self gravity of

the disk is included. There were no strong periapse secular resonances in the SZ in

any of our systems. Indeed, they were all beyond 2 AU.

In our investigations of the behavior of our simulations we found a periapse

secular resonance that was unexpected to us, but could play an important role in

the formation of terrestrial planets in systems with one giant planet. One of the

methods that we used to separate the effects of secular resonances from mean motion

resonances was to perform a 107 year SyMBA simulation with the embryos and just

the inner giant planet of the system. Our justification was that the locations of the

mean motion resonances with the innermost giant planet would not be affected by

removing the other giant planets, but there would not be secular resonances in the

runs with one giant planet. We believed that there would be no secular resonances

because the planet would not be significantly precessing, but the embryos would

be precessing because of the presence of the giant planet. Thus, there could be no

commensurability.

We were surprised to find that in a simulation that consisted of embryos and the

inner giant planet of System II, the vast majority embryos with 1.5 ∼< a ∼< 2.1 AU

were driven to large eccentricities on timescales less than a million years, while this

did not happen in the simulations with all the giant planets. Figure 12 shows the

behavior of one of the embryos in this region. Just before the object’s eccentricity

is excited, the periapse of the particle is precessing in the positive direction. At
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roughly 420,000 years its procession rate slows, turns around, and starts to precess

in the opposite direction. During this time the particles maximum eccentricity is

pumped from ∼ 0.2 to ∼ 0.6 due to the long-term (∼ 20, 000 yr) alignment between

the periapse of the planet and that of the embryo — i.e. due secular resonance with

the planet. This is true even though the planet is not precessing.

So, the question naturally arises: What was wrong with our initial argument

that secular resonances would not be present in these systems? Recall that this

argument was based on the idea that the embryos would precess, but the planet

will not. This assumption is true as long as the embryos’ orbits are not crossing, in

which case the embryos will be precessing with $̇ > 0 all throughout the disk. As

soon as the embryos’ orbits begin to intersect, the self-gravity of the embryos will

tend to induce the embryos’ apse to precess with $̇ < 0 (Ward 1981). This occurs

because as an embryo follows its orbit, the amount of mass interior to its current

location changes — more mass when it is at apoapse and less when it is at periapse.

This increases its epicylic frequency, which,by itself, will cause the object to regress.

However, the effect of the giant planet is to drive apsidal precession ($̇ > 0). Thus,

depending on the mass distribution of the disk, and the mass and the location of

the planet, there may be a location within the disk where these two effects cancel

and embryos will not precess. At these locations there will be a secular periapse

resonance.

Periapse secular resonances are not the only secular resonances that have played

an important role in the eccentricity excitation of our systems. Indeed the secular

interaction that played the most important role in System IV (Figure 8E) was a

coupling between a nodal (or vertical) resonance (which drives up inclinations) and

the Kozai resonance (which couples e and i Kozai 1962).

The behavior of an embryo involved in this coupling is shown in Figure 13.

Initially, the embryo is in a nodal or vertical secular resonance with one of the
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nodal frequencies of the giant planets. This is shown by the oscillatory behavior of

the purple curve in Figure 13 which is the difference between the longitude of the

ascending node of the embryo and that of the inner giant planet (for comparison

Ω precesses with a period of 72, 000 years). This difference is roughly the critical

argument of the nodal resonance. The resonance immediately starts to drive up the

inclination of the embryo and by ∼ 27, 000 years it has i = 20◦. Notice that this

resonance does not affect the eccentricity, as the theory predicts.

However, after ∼ 50, 000 years the eccentricity of the embryo begins to change.

This is due to the Kozai resonance (Kozai 1962) which is a commensurability

between the precession of the longitude of periastron and the precession of the

longitude of the ascending node. Thus, in the Kozai resonance the argument of

perihelion, ω, librates. The Kozai resonance only occurs for objects with large

inclinations. Thus, the nodal resonance make the Kozai accessible by driving up

inclinations. The transition into the Kozai occurs at inclinations of ik, which is a

function of the ratio between the semi-major axes of the embryo and the planet.

In this problem this ratio is 0.47 and thus according to Kozai (1962) ik = 33.2◦.

For our embryo, ω starts to librate when the i = 28◦, which is in relatively good

agreement with the theory. This can be observed to happen at ∼ 50, 000 years

(green curve).

The Kozai resonance couples the inclination and eccentricity while keeping the

angular momentum of the embryo in the direction perpendicular to the invariable

plane, Lz, constant. The bottom panel in Figure 13 shows Lz as a function of time.

The nearly smooth decrease in Lz for the first 2×105 years is due to the nodal secular

resonances. Initially the changes in Lz are going into changing i. However, once the

embryo is driven into the Kozai resonance by the nodal resonance, the inclination

stops growing and the eccentricity starts to grow. Note the rate of change in Lz is

constant and thus is unaffected by this. However, until 1.2×105 years all the angular
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momentum is going into eccentricities. Thus, the Kozai resonance is coupling the

the changes in Lz due to the nodal secular resonance to changes in eccentricity.

For times later than 1.2 × 105 years, increases in eccentricity are correlated with

decreases in inclination as expected by Kozai’s theory.

This mechanism is very important in System IV. It drives all particles initially

with 2 < a < 2.3 AU to large inclination and eccentricities in only a few tens of

thousands of years and keeps them there for millions of years, see Figure 14. This

represents ∼ 17% of the mass of the embryos. Another way of thinking about this

is that this mechanism pulls about 5% of the total angular momentum out of the

system is a very short time. This mechanism is also responsible for driving some

of the embryos into the Sun and significantly exciting the eccentricities of the SZ

embryos via a process that we call secular conduction. We discuss this process in

more detail below.

Secular conduction within the embryo disk: As can be seen in Figure 8E, the embryos

in the SZ of the System IV runs have significantly higher eccentricities than those in

the NOPL runs. Indeed, the e? in these runs are the largest of any system besides

the one with a Jupiter-mass object on a very eccentric orbit. As we will now argue,

objects that are in nodal/Kozai secular resonance at ∼ 2.2 AU in this system are

dynamically exciting embryos in the SZ.

The nodal/Kozai secular resonance excites embryos at ∼ 2.2 AU onto orbits

that cross into the SZ. Figure 14 shows the eccentricity of embryos in one of the

System IV runs at 2 million years. The effects of the nodal/Kozai resonance can be

seen as large eccentricities between 2 and ∼ 2.4 AU. These objects are crossing the

orbits of the embryos in the SZ.

To investigate how the excited embryos affect those in the SZ, we performed the

following experiment. We generated two separate populations from the embryos in

Figure 14. The first set were those objects in the SZ and the second were those with
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semi-major axes between 1.9 and 2.5 AU. We performed a 5 × 106 year integration

of just these two sets embryos, without the giant planets or the embryos outside

these two regions. Physical collisions were disabled in this simulation. In addition,

we did not allow the embryos in the SZ to gravitationally interact with each other.

So, the SZ embryos only gravitationally felt the presence of the embryos between

1.9 and 2.5 AU. No other effects were included.

The green curve in Figure 15A (marked ‘Embryo Sub-population’) shows the

temporal behavior of e? in this simulation. Also shown for comparison are e? in

the full-up System IV runs in black and e? in the NOPL runs in orange, which are

the same data that are shown in Figure 8E. There is excellent agreement between

this test simulation and that for the full-up System IV runs, demonstrating that it

is indeed the objects in the nodal/Kozai secular resonance that are responsible for

exciting the SZ embryos.

The next question to ask is what dynamical mechanism couples these two

populations. The natural first guess is that it is gravitational scatterings between

embryos. From Hayashi et al. (1977), the RMS change in the semi-major axis and

eccentricity of an object in a swarm that is interacting with a different population

during time t is:
〈

(δa)2
〉

= 0.69 n σe a2 t vrel

〈

e2
〉

, (10)

〈

(δe)2
〉

= 0.43 n σe t vrel

〈

e2
〉

,

where the symbols have the same meaning as in Equation (7) except that vrel is

the relative velocity of the two populations and
〈

e2
〉

refers to the swarm.

We can now calculate the expected changes due to scattering in the SZ between

2×106 and 4×106 years. Using the appropriate values for this situation, we find that

Equation(10) predicts that (δa)RMS = 8.2×10−4 AU and (δe)RMS = 5.4×10−4. In

our simulations, however, we find (δa)RMS = 9×10−4 AU and (δe)RMS = 0.08. The

fact that the theory predicts the change in semi-major axis quite well, but fails to
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produce the correct change in eccentricity by over two orders of magnitude strongly

suggests that some other mechanism is to blame for the eccentricity changes. In

addition, this mechanism must not affect semi-major axes and thus is probably

secular in nature.

Indeed, we now show that forced secular motion, as we described above, is

the reason for the eccentricity change. We determined this by performing the

following numerical experiments where we slightly vary the physical situation to test

particular mechanisms. In these types of experiments it is beneficial to minimize

the complexity of the system as much as possible. Thus, we replaced the objects

in the SZ with massless test particles and held the orbits of the perturbers (i.e.

those objects near ∼ 2 AU that were excited by the nodal/Kozai resonance) fixed

to insure that the nature of perturbation does not change over the experiment.

The first experiment in this series was one designed to investigate how the

simplifications we employ affect the behavior of the system. Thus, in this experiment

the sub-population of embryos were used directly without modifying the initial

conditions or the underlying physics. The green curve in Figure 15B is the results

for the fully interacting sub-population and is reproduced from Figure 15A. The

red curve shows the results of this test particle simulation with the same initial

conditions. For roughly the first million years the curves are the same, indicating

that these test particle simulations are reasonable facsimiles of the fully interacting

runs for this timescale. The divergence after a million years results from feedback

due to the response of the perturbers to the embryos in the SZ.

Now that we know that this test particle representation of our system is

reasonable, we can start to experiment. Our first experiment is to confirm the

results of Equation 10 that two body scattering is not responsible for the eccentricity

growth. This experiment starts with the same initial conditions as the first

simulation in this series. However, here we only allow the perturbers to attract the
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test particles if they are within 1.7 AU of the star. This distance was chosen since

it was the maximum heliocentric distance of any of the test particles. In addition,

once a year we randomly changed the longitude of the ascending node, argument of

perihelion, and mean anomaly of the perturbers[12] so that any possible resonance

is removed. As a result, the only physical process included in this simulation is

gravitational scattering. The purple curve in Figure 15B shows e? of this system.

The change in e? in the first 2 million years is 10−4 in reasonable agreement with

the analytic estimates above.

The next experiment is to investigate whether forced motion can explain the

temporal evolution of e?. In this experiment we need to generate a population

of perturbers that do not gravitationally scatter with nor resonate with the test

particles. Thus we generated a population that has the same number and mass as

previous simulations, but the semi-major axes of all the perturbers was set to the

average a from the previous simulations (2.1 AU) and the inclinations were set to

the average i from the previous simulations (44◦). The average eccentricity of the

perturbers from the previous simulations was 0.62. If we used this eccentricity the

perturbers would cross the plane of the test particles within the SZ so that close

encounters would be unavoidable. To avoid close encounters, we set the eccentricity

of the perturbers to 0.67 so that their perihelion distance was inside the location

of the test particles. In addition, we set the perturbers’ argument of perihelion to

zero so that they cross the plane when they are at periapse and apoapse. So as the

perturbers orbit they: 1) start in the plane at their periapse which is inside the test

particles, 2) they are far above the test particles when then cross the SZ on their

[12]
Actually we only randomized the phases if the perturber was beyond 1.7 AU and required that the

heliocentric distance after randomizing be beyond this. This was to insure that perturbers did not

appear or disappear during a close encounter.
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way outward, 3) they are in the plane again when they are at apoapse, which is

beyond the location of the test particles, and 4) they are below the test particles

when then cross the SZ on their way back in. The remaining angles were chosen

at random. Finally, once a year we randomly changed the mean anomaly of the

perturbers to remove any mean motion resonances.

The blue curve in Figure 15B shows e? of this system and is in good agreement

with the behavior of the first test particle simulation (red curve). The faster growth

in the current simulation (blue curve) is probably due to the fact that the perturbers

are on slightly higher eccentricity orbits. Thus, we conclude that the growth in e?

in this system is due to the secular forcing by the perturbers.

We refer the process where a significant number of embryos on eccentric orbits

secularly force other embryos to large eccentricities as secular conduction. One

question that occurred to us when we discovered this mechanism is whether it

requires massive embryos in order to work, or whether a large number of smaller

objects could have the same effect. If the later is true, secular conduction could be

important at earlier stages of planet formation. To test this, we repeated the test

particle simulation above, increasing the number of perturbers from 12 to 48 while

keeping their total mass fixed. This new simulation produced the same results as

the original. Thus we conclude that for up to perhaps a hundred perturbers secular

conduction will function in a manner that is dependent only on the total mass and

not how that mass is divided up between embryos. However, we note that we may

not be able to extrapolate this conclusion to very large N .

Secular conduction is also responsible for exciting the eccentricities in the

System II’s SZ (see Figure 8C). In this system, objects exterior to ∼ 2 AU are

excited to large eccentricities primarily by a strong periapse secular resonance.

Usually these objects are very short lived because they suffer close encounters with

the inner giant planet. However, a few get trapped in mean motion resonances with
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the giant planets thereby increasing their dynamical lifetimes. These objects have

eccentricities between ∼ 0.3 and ∼ 0.6 and secularly force the eccentricities in the

SZ. Interestingly, only 4 embryos get trapped in the mean motion resonances, three

in the 3:1 and one in the 2:1. These are enough, however, to excite the eccentricities

in the SZ.
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IV. Summary and Conclusions

The dynamical structure of the newly discovered planetary systems was not

expected by most astronomers. Although currently limited to gas giant planets,

technologies, like the Terrestrial Planet Finder or TPF, are in development that

may soon allow us to observe terrestrial planets around other stars. Thus, we believe

it is time to examine terrestrial planet formation in other planetary systems. Here

we studied the role that giant planets play in determining the number, mass, and

location of terrestrial planets.

We performed simulations of terrestrial planet formation around solar-mass

stars with proto-terrestrial disks similar to what we believe existed in the Solar

System using a general model that can account for the formation of the terrestrial

planets in the Solar System. The only variable in these simulations (besides

stochastic events) was the structure of the giant planet system. In particular, we

studied the growth of terrestrial planets in 6 different outer planetary systems: I)

no giant planets at all, II) the Solar System’s outer planets (SS), III) a system with

larger planets than the Solar System, IV ) a system with 7 Uranus-mass planets, V )

a system with three Saturn-mass objects on eccentric orbits, and V I) a system with

a single Jupiter-mass object on a very eccentric orbit. All but the first two systems

were taken from our synthetic giant planet systems (Levison et al. 1998) and are

shown in Figure 1 and listed in Table 1. For each of these systems, we performed 4

runs in order to start to develop a basic understanding of the dynamical role that

giant planets play in terrestrial planet formation. The final planets produced in our

simulations can be found in Figure 3.

Every one of our giant planet systems produced at least one planet in the

HZ that is massive enough to support plate tectonics through radiogenic heating

( ∼> 0.23 M⊕, see Williams et al. 1997). However, the fraction of runs in each giant

planet system that produce such a planet did vary significantly. System NOPL and
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System SS basically always produced such a planet. However, Systems II, IV, and

V only produced such a system 25% (one in four) of the time. Thus, the giant

planets do indeed affect the chances of finding a large planet in the HZ.

In these simulations we find an interesting correlation between the number,

mass, and the location of the terrestrial planets. The larger the terrestrial planets,

the fewer of them there are, and the closer they are to the central star. If a very large

(∼ 2M⊕) object formed, it usually formed alone and it always had a semi-major

axis within 0.8 AU of the star.

We show that these relationships are due to dynamical excitation of the

embryos’ eccentricities by the giant planets. In particular, there is a relationship

between the RMS eccentricity in the so called Study Zone, between 0.9 < a <

1.5 AU, and the structure of the terrestrial planets. If the eccentricities become

large, objects in the SZ will cross into regions close to the star and tend to collide

with embryos there. Thus, the planets interior to the SZ are larger while smaller or

no planets form in the SZ. In extreme cases like that of System V, this dynamical

excitation drives embryos into the star and thus only small low-mass terrestrial

planets form.

Each of the giant planet systems affects the embryos in its unique way. We

summarize this in what follows:

System SS: Besides self-stirring, the embryos in the SZ are primarily excited by

being scattered into and out of the ν5 secular resonance. However, this effect

is relatively weak and does not significantly effect the terrestrial planets. Thus,

the number, sizes, and location of the terrestrial planets within ∼ 1.5 AU that

formed in the SS runs are similar to those of the runs with no giant planets.

These results are consistent with the overall similarities of the results between

the Chambers & Wetherill (1998) and Agnor et al. (1999) investigations where

the former included giant planets and the latter did not.
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System II: The embryos in the SZ are excited by a combination of effects. Objects

exterior to ∼ 2 AU are excited to large eccentricities primarily by a strong

periapse secular resonance. A few of these objects get trapped in mean motion

resonances with the giant planets thereby increasing their dynamical lifetimes.

These objects then secularly force the eccentricities in the SZ. Thus, dynamical

excitation of the embryos by the giant planets in regions other than the SZ can be

transferred into the SZ on short timescales via what we call secular conduction.

System III: The embryos in the SZ are primarily excited by secular forcing from

the inner giant planet.

System IV: The SZ embryos are again excited via secular conduction from the

region near 2 AU. These more distant embryos first are trapped in a nodal

secular resonance which pumps their inclinations to large values. Once their

inclinations reach ∼ 28◦, they enter the Kozai resonance (Kozai 1962), which

couples inclinations and eccentricities. Thus, the eccentricities of these embryos

grow to large values. Indeed, this combination of resonances can excite the

embryos to inclinations approaching 90◦ and eccentricities on the order of 0.9.

System V: The embryos in the SZ are excited by secular forcing from the giant

planet. Since the giant planet is massive and on a very eccentric orbit (e = 0.8),

the embryos are excited to very large eccentricities.

As can be seen from these descriptions, secular effects are the main cause of

excitation by the giant planets. Mean motion resonances do not seem to be very

important in the systems we studied. In addition, secular interactions between the

embryos can be responsible for the transfer of this excitation from one region of the

proto-terrestrial disk to another.

We conclude that the giant planets in a system can have a profound effect

on the structure and general habitability of the terrestrial planets. Because of the
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complex dynamical interactions that we have observed, we may need to determine

the exact orbits of the giant planets in order to determine whether or not terrestrial

planets will form in the HZ of a particular system. However, since secular forcing

from the innermost giant planet can play a dominate role, we should be able to rule

out habitable terrestrial planets in some systems by simply (at least compared to

finding terrestrial planets) determining the mass and location of inner giant planet.

This issue therefore should be considered when determining targets for the TPF. If

the TPF can only study a small number of stellar systems, it may be more effective

to first have a smaller and less ambitious mission designed to find and characterize

giant planets in those systems.
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Table 1

Giant Planet Systems

System Planet Mass a e i emax imax qmin

(M⊕) (AU) (Deg) (Deg) (AU)

SS G1 318 5.2 0.049 0.33 0.062 0.49 4.88

G2 94 9.6 0.056 0.93 0.090 1.02 8.69

G3 15 19.2 0.044 1.02 0.078 1.18 17.69

G4 17 30.1 0.011 0.73 0.023 0.80 29.32

II G1 746 3.77 0.057 0.02 0.063 0.06 3.54

G2 1261 6.22 0.015 0.02 0.021 0.05 6.05

G3 593 11.22 0.012 0.01 0.031 0.05 10.62

G4 23 24.95 0.048 1.32 0.100 1.40 22.29

G5 2 39.04 0.054 2.80 0.088 2.87 35.88

III G1 7 4.08 0.094 0.04 0.153 0.55 3.44

G2 26 5.38 0.017 0.15 0.081 0.47 4.95

G3 21 8.13 0.038 0.12 0.058 0.36 7.65

G4 16 12.64 0.052 0.39 0.075 0.41 11.69

G5 15 19.01 0.027 0.08 0.057 0.48 17.92

G6 4 25.97 0.058 0.69 0.121 0.79 22.89

G7 8 35.41 0.032 0.39 0.066 0.66 33.06

IV G1 87 4.50 0.162 11.61 0.287 17.80 3.20

G2 85 7.21 0.109 6.50 0.266 15.19 5.29

G3 87 21.18 0.101 4.65 0.121 5.11 18.60

V G1 343 17.37 0.788 21.97 0.788 21.97 3.69

The columns are: 1) planetary system (SS indicates the Solar System), 2) giant planet, 3) planetary mass, 4) semi-major

axis (a), 5) initial eccentricity (e), 6) initial inclination (i), 7) larest eccentricity in a 20Myr integration, 8) largest

inclination, 9) smallest perihelian distance in a 20Myr integration.
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Figure Captions

Figure 1— The giant planet systems used in our simulations. Positions of a circle

along abscissa indicates the planet’s semi-major axis. The size of the circle

indicates the planetary mass (radius ∝ mass1/3). In addition, the mass of

the planet, in M⊕, is printed above each planet. The markings beneath each

planet indicate the range of distances from the central star (periastron and

apastron) with the central vertical line indicating the semi-major axis.

Figure 2— Initial conditions for embryos. The top panel shows the initial

eccentricity as a function of semi-major axis. The bottom panel shows the

initial inclination.

Figure 3— A comparison between the real terrestrial planets in our Solar System

and the 24 terrestrial planet systems created during our simulations. The

simulated systems are seen at 2×108 years. Positions of a circle along abscissa

indicates the planet’s semi-major axis. The size of the circle indicates the

planetary mass (radius ∝ mass1/3). In addition, the mass of the planet, in

M⊕, is printed above each planet. The markings beneath each planet indicate

the range of distances from the central star (periastron and apastron) with

the central vertical line indicating the semi-major axis. A) The real terrestrial

planets. B) Fictitious terrestrial planets with no giant planets. C) Fictitious

terrestrial planets that grew under System SS. D) System II. E) System III.

F) System IV. G) System V.

Figure 4— The eccentricity and semi-major axis of planets in one of our

System NOPL runs at 2×108 years (TOP) and 109 years (BOTTOM). The size

of the symbol is related to the mass of the planet. The horizontal ‘error-bars’

indicate the range of distances from the central star (periastron and apastron).

Figure 5— The relationship between the mass of the largest terrestrial planet in

a system and the mass weighted average semi-major axis of the terrestrial
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planets. To calculate the later value, only terrestrial planets that were not on

giant planet-crossing orbits and those that have suffered at least two mergers

are used (see text for explanation). Each symbol represents a combination

of the 4 runs that we performed under each of the 6 giant planet systems.

The ‘errors bars’ show the range under each giant planet system. The shaded

region shows the location of the Habitable Zone.

Figure 6— Similar to Figure 5 except that this figure shows the relationship

between the mass weighted average semi-major axis of the terrestrial planets

at 2 × 108 years and the RMS eccentricity in the SZ at 107 years.

Figure 7— LEFT: Top) The eccentricity and semi-major axis of the embryos in

one of our System NOPL at 107 years. The horizontal ‘error-bars’ indicate

the range of distances from the central star. Bottom) Probability per year

that a target body with a = 1.2 AU , e = 0.15, i = 5.7◦, and M = 0.089M⊕

will collide with each of its neighbors. RIGHT: Same as LEFT but for one

of our System II runs and with a target with a = 1.3 AU , e = 0.24, i = 5.5◦,

and M = 0.104M⊕.

Figure 8— The temporal behavior of e? for the embryos in each giant planet

system. The curves show the average of the 4 runs in each system. The orange

curve is the same in each panel and shows this behavior for the System NOPL

runs. The black curve shows these data for the giant planet system as marked

in the legend and is as follows: A) NOPL. B) System SS C) System II. D)

System III. E) System IV. F) System V.

Figure 9— The red curves show the temporal behavior of e? for the embryos in each

giant planet system and are reproduced from Figure 8. The green curves show

the temporal behavior of a test particle’s eccentricity under the gravitational

effects of the innermost giant planet. A) System III. B) System V.

Figure 10— The black curves show the temporal behavior of e? for the embryos in

51



each giant planet system and are reproduced from Figure 8. The green curves

show the mean orbit crossing velocity from the same simulations. Note the

green scales on the left side of the figure. A) System III. B) System V.

Figure 11— Eccentricity verses semi-major axis for objects under the gravitational

effect of the giant planets in our Solar System. A) The embryos from one of

our System SS runs at 106 years. B) Test particles at 106 years. In addition

to the giant planets, the test particles were embedded in a 4M⊕ disk with

the same surface density distribution as the embryos. The ν5 and ν6 secular

resonances at located ∼ 1.1 AU and ∼ 2.2 AU, respectively.

Figure 12— The temporal behavior of an object as it passes through the zero

procession secular resonance. This object is responding to the Sun and one

giant planet, which is not precessing. The top panel shows the evolution of the

object’s eccentricity while the bottom panel shows its longitude of perihelion,

$.

Figure 13— The temporal behavior of an embryo in the coupled nodal, Kozai

secular resonance. We plot the eccentricity (blue), inclination (red), argument

of perihelion, omega (green), critical argument of the nodal resonance, Ω−Ωpl

(purple), and angular momentum in the direction perpendicular to the IIP

(black).

Figure 14— Eccentricity verses semi-major axis for embryos in one of our

System IV runs at 2 million years.

Figure 15— The temporal behavior of e?. A) The orange and black curves are from

one of our System IV runs and System NOPL runs, respectively. The green

curve is from a simulation of interactive embryos that consists of a subset of

the embryos from the System IV run. See the text about how these embryos

where chosen. B) The green curve is the same as that in (A). The other

curves show the results of a series of simulations where test particles (TPs)
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are interacting with embryos on eccentric orbits. Red: Same initial conditions

as for the green curve. However here the perturbers cannot respond to the

objects in the SZ because the SZ objects are massless test particles. Purple:

same as red curve except test particles can only respond to close encounters

with the perturbers. Blue: A test particle simulation were close encounters

cannot occur and thus only secular effects are important. See test for details.
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