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Mean Motion Resonances in the Transneptunian Region

Part II: The 1 : 2, 3 : 4, and Weaker Resonances
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The stability of orbits in the transneptunian region is numeri-
cally computed. It is found that, in analogy to the asteroid belt, there
exist many chaotic layers associated with thin mean-motion reso-
nances. These are either moderate- and high-order resonances with
Neptune or three-body resonances with Neptune and Uranus. The
orbital eccentricity chaotically increases at the thin resonances, al-
lowing some Kuiper Belt objects to be slowly transferred to Neptune-
crossing orbits. The stability of two large mean-motion resonances
with Neptune, the 1 : 2 and 3 : 4, is systematically explored. It is
shown that orbits in both resonances, with small resonant ampli-
tudes are stable over the age of the Solar System. The possible role
of collisions and dynamical scattering in clearing the resonances is
discussed. It is inferred from orbital angles of 1997 SZ10 and 1996
TR66 that these bodies are most probably on stable tadpole orbits
in the 1 : 2 Neptune resonance. c© 2001 Academic Press

Key Words: Kuiper Belt; Oort Cloud, celestial mechanics; stellar
dynamics.
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This paper extends our previous work, in which the regular
chaotic dynamics of the 2 : 3 mean-motion resonance (MM
with Neptune was studied (Nesvorn´y and Roig 2000; hereafte
N&R00). In N&R00, we calculated the maximum Lyapun
characteristic exponent (LCE) and measures of chaotic ev
tion of orbital elements (Laskar 1994, Morbidelli 1996) a
frequencies (Laskar 1999) for initial conditions on a grid
a, e, i . The first set of initial conditions (1010 orbits) sam
pled the 2 : 3 resonant orbits at low inclinations and the s
ond set (405 orbits) included large-inclination orbits. We h
classified the resonant orbits into three groups: (i) those
which the escape rate to Neptune-crossing orbits att = 4 Byr
1 Present address: Observatoire de la Cˆote d’Azur, BP 4229, 06304 Nice
Cedex 4, France.
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called these orbits themarginally unstableorbits. Other or-
bits, i.e., those for which the escape rate att = 4 Byr was
less than 1%, were either (ii)strongly unstableorbits, where
most of the original population escaped att < 4 Byr,
so that att = 4 Byr there were too few surviving bodies to assu
the required flux, or (iii)practically stableorbits, with the dy-
namical lifetimes largely exceeding the age of the Solar Sys
and an equally negligible escape rate att = 4 Byr.

The practically stable orbits were characterized by a sm
LCE and very slow chaotic evolution, and were usually loca
in the core of the 2 : 3 Neptune MMR. The marginally unsta
orbits had larger LCEs (10−5–10−6 yr−1) and were initially lo-
cated at larger resonant amplitudes (Aσ ∼ 100◦–120◦), where
the slow chaotic evolution ofAσ transferred them, after a lon
time interval, to the strongly unstable region at the resonant
ders. The strongly unstable orbits had initiallyAσ > 120◦–130◦

and theirAσ quickly increased, driving them outside the res
nance, where bodies lose phase protection against the encou
with Neptune.

This resonant structure has been already known (Dun
et al.1995, Morbidelli 1997, Gallardo and Ferraz-Mello 199
N&R00 provided an understanding of the 2 : 3 MMR dynam
that is both detailed and global. We identified several sec
and other mechanisms present inside the resonance that
a nonnegligible effects on the orbital chaos and instability
resonant objects.

In N&R00, we also discussed the observed population of
2 : 3 Neptune MMR (Pluto and 15 Plutinos with well-determin
orbits) and its relation to the Jupiter-family comets. Assum
that the 2 : 3 MMR supplies 15% of new comets needed to k
the population of the Jupiter-family comets in a steady st
we computed that at most 6× 108 comets currently exist in the
resonance.

2 If P(t) is the percentage of test particles escaping from the initial popula
in the interval [0, t ], then by the escape rate at timet we mean the derivative

of this function. For practical reasons, we refer here and in the following to the
escape rate in units of per billion years.
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RESONANCES IN THE TR

In modeling the chaotic dynamics in N&R00 we used s
cial numerical methods. The chaotic evolution (diffusion) w
measured by the change of frequencies (frequency analysis
of actions (determined as extrema of filtered orbital eleme
on a time-shifting window) over 45 Myr. The algorithms we
described in N&R00 and we refer the reader to Section 3.
that paper.

One of the recent accomplishments achieved by the app
tion of the above methods was in understanding the fine s
ture of the asteroid belt. It turned out that, besides the m
mean-motion and secular resonances, there exist a large nu
of thin (<10−2 AU) chaotic layers associated with modera
and high-order MMRs with Jupiter (Holman and Murray 199
three-body resonances with Jupiter and Saturn (Nesvorn´y and
Morbidelli 1998, 1999), or exterior MMRs with Mar
(Morbidelli and Nesvorn´y 1999). About 40% of asteroids ar
strongly chaotic and have the Lyapunov time (inverse of
LCE) less than 105 yr (Šidlichovský and Nesvorn´y 1999) be-
cause they are located in some thin MMR. Although the cha
changes of eccentricity that drive resonant asteroids to pla
crossing trajectories happen on much longer time intervals
stability over the age of the Solar System is not assured for m
of them (Murray and Holman 1997, Miglioriniet al.1998). As
we describe in Section 2, the situation in the Kuiper Belt (K
is similar.

A detailed account of an extensive literature about the
dynamics was given in N&R00. In brief, Duncanet al. (1995)
computed a detailed map of stable/unstable regions in the K
integrating a large number of orbits in the 32–50 AU semi-ma
axis interval. The orbits starting at perihelion distances less
35 AU were found unstable in 4 Byr unless they were associ
to some Neptune MMR (Morbidelliet al.1995, Malhotra 1995
Morbidelli 1997). The orbits with the perihelion distances larg
than 35 AU were found stable unless they were related to
perihelion or node secular resonances (Kneˇzević et al. 1991).
These findings determined the stable locations in the KB wh
real Kuiper Belt objects (KBOs) Could remain today. Inde
most of the 300 comets detected at present in the KB are loc
in the stable regions found by Duncanet al.(1995). It also turned
out that some of the stable regions found by Duncanet al.are not
populated. This is the main argument that something beside
dynamical sculpting of the planets is responsible for the struc
we see. The reader can refer to the review of Morbidelli (19
for further reading on the Kuiper Belt primordial evolution a
its present dynamics.

In this paper we also investigate the regular and chaotic
namics of two large MMRs. In Section 3 we study the stabi
of the 1 : 2 MMR with Neptune at 47.8 AU. It is interestin
to know whether this resonance is unstable over the age o
Solar System or whether the lack of observed resonant bo
(we discuss the orbits of two possible candidates for 1 : 2 M
KBOs—1996 TR66 and 1997 SZ10—in Section 3.1) is rela

to some primordial mechanism. Even if Duncanet al. 1995)
already showed that there exist some stable 1 : 2 resonan
NSNEPTUNIAN REGION II 105
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bits, We believe that a detailed anlysis is needed to answe
question with more confidence.

The 1 : 2 and 2 : 3 Neptune MMRs should have been initia
populated by an approximately equal number of objects in
scenario of smooth expansion of the planetary orbits with a
batic capture of objects into resonances (Malhotra 1995). H
and Malhotra (1999) have shown that the above is not ne
sarily true if the planets interacted with a massive primord
disk (∼50 M⊕). In this case, the semi-major axis of Neptu
was subject to random kicks that made the captures in the
MMR inefficient. Moreover, the scenario of excitation and m
loss in the primordial KB driven by Neptune-scattered plane
imals (Petitet al. 1999) does not favor the resonant popu
tions with respect to the nonresonant ones. In Section 3.3
show what ratio of the 1 : 2 and 2 : 3 MMR populations sho
be expected from the respective sizes of the stable reso
cores.

In Section 4 we extend the present analysis to the 3 : 4 M
with Neptune at 36.5 AU, where one KBO—1995 DA2—wi
well-determined orbit is found. This resonance was proved t
stable over the age of the Solar System by Duncanet al.(1995),
who also showed that the chaotic evolution on the limit of
stable core of the 3 : 4 MMR mostly affectsAσ .

2. THE FINE RESONANT STRUCTURE OF THE
TRANSNEPTUNIAN REGION

The initial conditions of 2800 test particles were chosen e
distantly spaced in semi-major axis (1a = 0.004 AU) between
38.8 and 50 AU, fixinge= 0.1 andi = λ = $ = Ä = 0, where
λ, $ , andÄ are the mean, perihelion and node longitudes,
spectively. The initial conditions of four outer planets (Jupi
to Neptune) with respect to the mean ecliptic and equinox J2
were taken from the JPL DE403 ephemeris for the date 2/21/1
(JD 2450500.5). The orbital evolution of massive bodies (p
ets) and massless test particles were computed by the symm
multistep integrator (Quinlan and Tremaine 1990) for 108 yr us-
ing a 40-day step for the planets and a 200-day step for
test particles. Additionally, the variational equations were
merically integrated for the purpose of the LCE evaluation
each simulated orbit. This was done by the symmetric multis
method using the same step sizes. The variational vector
periodically renormalized following the algorithm of Benett
et al.(1976) in order to avoid computer overflow. The LCE es
mate for each surviving test particle was computed as ln1(t)/t ,
with t = 108 yr (1(t) is the norm of the variational vector a
time t), and is plotted as a function of the initial semi-major a
in Fig. 1c. For the test particles escaping to Neptune-cros
orbits, ln1(t)/t was plotted at the time of the first Neptun
crossing. The minimum value of the LCE that we can de
with the integration time span is about 10−7 yr−1. Examples of
regular, moderately, and strongly chaotic trajectories as we
t or-
the interpretation of the LCE dependence on the semi-major axis
were discussed in Morbidelli and Nesvorn´y (1999).
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106 NESVORNÝ

FIG. 1. A survey of LCEs in the transneptunian region: (a) a vertical l
was placed at the initiala if the corresponding test particle escaped att < 108 yr;
(b) minimum distances of test particles to Neptune; and (c) LCE estimat
t = 108 yr (in logarithmic scale). The initiale andi of the 2800 integrated tes
particles were 0.1 and 0◦, respectively. The test particles at MMRs with Neptu
have their minimum distance (b) larger than the test particles in the imme
vicinity due to the resonant phase-protection mechanism. Apart from the
resonances, which may be easily identified in (c) as wide “holes” and “pea
there are many thin peaks fora > 44 AU with the LCE ranging from 10−6 to
10−7 yr−1. These peaks are related to thin MMRs with Neptune and Ura
Note the rough background profile of the LCE at about 10−7 yr−1 for a > 44 AU,
suggesting the stochasticity of all the integrated trajectories.

2.1. The Phase-Protection Mechanism in MMRs

The minimum-approach distance of each test particle to N
tune in 108 yr is plotted in Fig. 1b. The vertical line in Fig. 1
denotes the initiala of test particles that attained the Neptun
crossing orbits in the integrated time span; these orbits w
usually ejected to heliocentric distances larger than 100 AU

More than 50% of test particles with initiala < 43 AU es-
caped to Neptune-crossing orbits. Those that survived in
semi-major axis interval were the test particles that avoi
encounters with Neptune, being locked in MMRs (labeled
Fig. 1b). This is easily seen (Fig. 1b) for the 2 : 3, 7 : 11, 5
8 : 13, and 3 : 5 MMRs, in which the minimum distance
Neptune is kept larger than in the background.

The phase-protection mechanism is a consequence of res
dynamics. The resonant angleσ of the p+ q : p MMR with
Neptune is defined by
qσp+q:p = −(p+ q)λN + pλ+ q$, (1)
AND ROIG
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wherep,q are integers andλN is the mean longitude of Neptun
q ≥ 1 is called the order of the resonance, and the width o
resonance ina is generally proportional to the powerq/2 of
the eccentricity. For the resonances interior to the planet’s o
p ≥ 1, and for the outer resonances,p ≤ −2. With exception of
the MMRs with p+ q = −1 andp ≤ −2 (i.e., the outer reso
nances of the type 1 :r , r ≥ 2), which permit asymmetric libra
tions (Beaug´e 1994), the angleqσp+q:p oscillates either abou
0◦ (inner resonances withq odd) or 180◦ (inner resonances wit
q even, and outer resonances withp+ q 6= −1).

Assuming a body to be locked in some outer resonancep ≤
−2) with the libration center at 180◦ and a circular orbit for
the planet, Eq. (1) shows that in the limit of zero-Aσ librations
the conjunctions of this body with the planet (λ = λN) happen
whenq(−λ+$ ) = π . This means that during conjunction
the mean anomalyM = (2k+ 1)π/q, with k being an integer
For first-order resonances (q = 1), the true anomalyv is 180◦

and the object is in the aphelion of its orbit. Consequently
encounters with the planet occur even on large-eplanet-crossing
orbits providing they have sufficiently smallAσ .

The minimum distance between Neptune and the l
amplitude 2 : 3 resonant orbits in Fig. 1b is about 12.2 A
The distance at aphelic conjunctions isa(1+ e)− aN, where
a = 39.45 AU. This gives a distance of 13.3 AU for e= 0.1,
in good agreement with the minimum distance computed in
simulation, the small difference being related to the fact tha
angles initially chosen for the simulation did not permit orb
with Aσ < 60◦ in the 2 : 3 resonance.

In general, at outer resonances of orderq > 1 the resonan
angleσ can librate about one ofq distinct centers placed a
(2k+ 1)π/q, k being an integer. Ifq is odd, then one of th
centers is at 180◦ and the resonant phase-protection mechan
for zero-Aσ librations about this center works in the same w
as for first-order resonances (q = 1) assuring conjunctions i
aphelia. The otherq − 1 centers are located atσ 6= 180◦ and the
zero-Aσ librations about these centers do not have conjunct
at aphelia. Ifq is even, all centers are atσ 6= 180◦, and again
the conjunctions do not happen at aphelia. The conjunc
condition isv +$ = λN, and the equation forM at conjunctions
can be approximated fromv = M + 2ecosM +O(e2), giving

M + 2
p+ q

q
ecosM = −(σ0+ 2kπ ), (2)

wherek is an integer andσ0 is the resonant center under cons
eration. This equation can be solved forM by iteration, but when
the eccentricity is not large, even omission of the first-order t
in e gives an acceptable approximation.

In the case of the 3 : 5 MMR ata = 42.3 AU, the minimum dis-
tance to Neptune in 108 yr registered for zero-amplitude librato
was 12.6 AU (Fig. 1b). This resonance has two libration c
ters atσ = 90◦ and 270◦ and for both of them the conjunction
with Neptune occur at about 90◦ from perihelia. The distance
a(1− e2)− aN, which fore= 0.1 gives 11.7 AU. Equation (2

gives somewhat larger value and still better agreement with the
simulation.
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semi-major axes. The libration of one resonant angle was usu-
ally easily found and the corresponding resonance labeled. The

3 There is a small shift between thea of the large LCE peaks in Fig. 2 and the
meana of the associated resonances, which is a consequence of short-periodic
oscillations ina induced by Jupiter having a 11.8-yr period and a 0.6–0.8 AU
RESONANCES IN THE TR

In the outer resonances of the type 1 :r , r ≥ 2, which present
asymmetric librations (i.e.,qσ0 6= 180◦), the phase-protection
mechanism is less efficient in separating the orbits from Nept
For example, in the 1 : 2 Neptune MMR (a = 47.8 AU) with
e> 0.3 the two centers are placed at about±68◦ (they vary from
±71◦ for e= 0.3 to±66◦ for e= 0.4) so that the conjunction
with the planet can happen relatively close to the perihelion.
e> 0.37, where the 1 : 2 resonant orbits are Neptune-cross
the potentially stable orbits must necessarily have the maxim
excursions ofσ less than 65◦.

For e= 0.1, the two centers of the 1 : 2 MMR are atσ0 =
±102◦. Assuming that minimum distance happens at conju
tion of the two bodies, we compute it by crude approxim
tion of Eq. (2) asa(1− e2)/[1+ ecosv] − aN with v = M =
102◦. This gives a minimum distance of 18.2 AU, which
only somewhat larger than the 16 AU determined numeric
(Fig. 1b).

2.2. Taxonomy of MMRs

None of the test particles starting witha > 44 AU escaped
to the Neptune-crossing space (Fig. 1a). Having initially lar
a ande= 0.1 produced sufficiently large perihelion distanc
(initially >39.6 AU) that even the nonresonant orbits are w
separated from Neptune. Test particles initially placed clos
the borders of the 1 : 2 MMR (a = 47.8 and 48.3 AU) had their
minimum distances decreased by as much as 5 AU with
spect to the background level; this happened because the
increased by more than 0.1 on 108 yr. The chaos near borders o
the 5 : 9 and 1 : 2 MMRs destabilized the orbits that, fore= 0.1
anda > 44 AU, were found unstable on 4× 109 yr by Duncan
et al.(1995). As mentioned earlier, the strength of MMRs is p
portional to the eccentricity so that ate= 0.15, where Duncan
et al. (1995) identified additional instabilities between the 4
and 1 : 2 resonances, other MMRs are important (namely 7
8 : 15, and 9 : 17).

The LCE estimates (Fig. 1c) show the complex chaotic str
ture of the transneptunian region. Fora > 44 AU the plot
presents many peaks rising from the background level. We h
checked that the main peaks correspond to chaotic regions w
the computation of the LCE has converged to a nonzero l
value (see Morbidelli and Nesvorn´y 1999). The background
value of about 10−7 yr−1 is dictated by the limited integration
time span; when the latter is increased, the background l
generally decreases. The roughness of the background lev
Fig. 1c suggests the general nonintegrability of the motion as
cussed for the asteroid belt by Morbidelli and Nesvorn´y (1999).
Fora < 43 AU, the only orbits with LCE∼ 10−7 yr−1 are those
at centers of the 2 : 3 and 3 : 5 MMRs.

The maximum LCE is nonzero in the 7 : 11 (10−5.6 yr−1),
5 : 8 (10−5.8 yr−1), and 8 : 13 (10−5.8 yr−1) MMRs with Neptune,
which appear as holes in the more chaotic background in Fig
Indeed, most orbits placed with the semi-major axes clos

these resonances were found unstable over the age of the S
System by Duncanet al. (1995).
NSNEPTUNIAN REGION II 107
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FIG. 2. Enlarged plot of Fig. 1c with the main MMRs being labeled. See t
for the notation. Note that the density of resonances increases with decreasa.
Most of the MMRs fora > 46.5 AU are the three-body resonances with Neptu
and Uranus. The semi-major axis range on thex axis overlaps in the second an
third panels.

In analogy to the asteroid belt, most features in the LCE
pendence ona observed in Fig. 2 (enlarged from Fig. 1c) a
related to MMRs; the secular resonances have lower LCEs
to their longer libration periods. The only exception is the int
val 40–42 AU where the three secular resonances (ν8, ν17, and
ν18 overlap (Kneˇzević et al.1991), causing escapes in 108 yr.

Some of the MMRs are labeled in Fig. 2. These associatio3

were found by short integrations of the test particles having la
LCE estimates and by the computation of angles with all re
nant combinations that come into question for the given rang
olaramplitude. Consequently, the initiala of a given resonance in our experiment is
about 0.25 AU larger than the mean resonanta.
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notation in Fig. 2 has the following rules: Nr : s is the Neptune
resonance with the resonant anglerλN − sλ+ (s− r )$ , where
s> r ≥ 1 are integers; Ur : s is the Uranus resonance with t
resonant anglerλU − sλ+ (s− r )$ , whereλU is the mean lon
gitude of Uranus; and the resonances labeled asnNNnUUn, with
nN, nU, and n being integers, are the three-body resonan
with the resonant anglenNλN + nUλU + nλ− (nN + nU + n)$
(Nesvorný and Morbidelli 1998).

While for a < 46.5 AU the largest peaks are associated w
the MMRs with Neptune, fora > 46.5 AU most peaks corre
spond to the three-body resonances with Neptune and Ur
We remark that the latter are placed on both sides of the
Neptune MMR according to a peculiar structure, which is a c
sequence of Uranus and Neptune being close to the mutua
mean-motion resonance: the angleλU − 2λN circulates with a
negative derivative and a period of about 4230 yr. The sum
multiple of this angle,j (λU − 2λN), j being an integer, with
multiple of the resonant angle of the 1 : 2 Neptune MMR,k(λN −
2λ),k being an integer, gives (k− 2 j )λN + jλU − 2kλ. This last
expression, with appropriate values ofk and j , gives the resonan
combinations of all 12 labeled MMRs witha > 46.5 AU (in-
cluding the 1 : 4 resonance with Uranus ata = 48.7 AU for k = 2
and j = 1). As the three-body MMRs appear in the pertur
tion approach at the second order in planetary masses (Nesy
and Morbidelli 1999), the above observation gives a hint on w

combinations of the perturbation harmonics give rise to the iden-

to a

he

spaced in the interval 37≤ a ≤ 39 AU (1a = 0.02 AU), with
e
tified three-body resonances.

FIG. 3. The chaotic evolution of orbits initially at 37–39 AU with lowe andi . The dark points denote the trajectory of a test particle before it first comes
distance of 2 AU from Neptune’s orbit. The large gray symbols show the trajectory after this moment. Sixteen percent of integrated test particles weretransferred
to Neptune-crossing orbits in 4× 109 yr. The low-e orbits were modified by slow chaotic diffusion ine driven by labeled MMRs with Neptune (and Uranus). T
line of properq = 35 AU is shown for reference. Note that the propera of all test particles stays almost constant under this line (excluding that ata > 39 AU,

e= 0.01 andi = 2◦. The initial angles of test particles wer
which started close to the left border of the 2 : 3 MMR). The changes of proa
encounters with Neptune.
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Figure 2 shows that chaotic regions become denser with
creasinga. In fact, the location of MMRs of a given order becom
denser approaching Neptune, and the sizes of the coefficien
the resonant harmonics increase with decreasing distance
the main perturbing body. This reflects in the number of vis
peaks. The height and width of each peak is roughly pro
tional to the square root of the size of the coefficient of
corresponding resonant harmonic (Murray and Holman 19
Nesvorný and Morbidelli 1999).

2.3. The Resonant-Driven Evolution of Eccentricity

What are the possible dynamical consequences of the c
plex resonant structure of the transneptunian region reveale
Fig. 2? In analogy to the asteroid belt, each thin MMR repres
a track at a given semi-major axis where the eccentricity and
clination chaotically change on long time periods (Murray a
Holman 1997). We give an example of this chaotic evolution
Fig. 3.

The numerical simulation was performed with four outer pl
ets (Jupiter to Neptune) and 101 test particles. The initial
sitions of planets were taken from JPL DE403 ephemeris
the date 1/1/1998 (JD 2450814.5) with respect to the invari
plane of LONGSTOP 1B simulation (Nobiliet al. 1989). The
initial conditions of test particles were chosen as equidista
perin the part of the trajectory denoted by gray symbols is due to the effect of close
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RESONANCES IN THE TR

chosen randomly from a uniform distribution between 0 andπ .
The orbits of planets and test particles were propagated in
using theswift rmvs3 integrator (Levison and Duncan 199
with a 1-yr time step. The total integration time was 4× 109 yr.

The orbital elements of test particles were averaged ov
shifting window of 10 Myr using the same procedure
Morbidelli and Nesvorn´y (1999, their Eq. (1)). The 10-Myr in
terval is long enough to cancel out all important quasi-perio
oscillations of orbital elements. Therefore, in the case of lo
integrability of the equations of motion, the orbital elements
fined by the above averaging do not change with time. They
integrals of the motion and are usually calledproper elements.
Conversely, the change of proper elements with time reveals
quasi-periodic evolution, i.e.,chaotic diffusion. For purposes o
Fig. 3, the proper elements were computed every 105 yr.

The dark points in Fig. 3 denote the trajectory before it fi
became Neptune-grazing (if ever), i.e., before the test parti
osculating perihelion first happened to be close to Neptu
orbit. We choose a threshold distance of 2 AU. Larger g
symbols show the evolution of the trajectory after this insta
The proper perihelion lineq = 35 AU is shown for reference
as an approximate limit above which Neptune dominates
motion. Note however that this is only a rough criterion due
the secular oscillations of osculating eccentricities.

The simulation resulted in 16 escapes to Neptune-cros
orbits. The escapes of two test particles at the extreme left o
integrateda interval happened at the chaotic border of the 3
Neptune MMR (centered at 36.48 AU). The particle escapin
the extreme right of the integrated interval was initially plac
near the chaotic border of the 2 : 3 MMR (centered at 39.45 A
The remaining 13 particles that became Neptune-crossers
ing the integration time span evolved from their respective in
locations (initial propere< 0.02) due to a gradual enlargeme
of the propere. Such enlargement happened at the position
second- and higher-order MMRs with Neptune and at locat
of three-body resonances with Neptune and Uranus. While
propera of these particles stayed almost constant at this stag
orbital evolution (dark points), the resonant-driven chaotic
fusion enhanced the objects’ propere; above the line of prope
q = 35 AU, Neptune close encounters became important. U
the effect of Neptune encounters, these bodies started to ran
walk in a, roughly following the curves of invariant Tisseran
parameter with respect to Neptune (Valsecchi and Manara 19
This second stage of orbital evolution was much shorter and
test particles normally reached heliocentric distances larger
100 AU in a time interval typically not exceeding 108 years, at
which point they were removed from the simulation. The in
gration of all 16 particles escaping to Neptune-crossing or
were stopped beforet = 4× 109 yr.

Most of the escaping test particles (9) did so via the 5
Neptune MMR (a = 37.68 AU). In fact, these were all particle
that had the initial propera in the range 37.6–37.75 AU. The siz
of this interval is about the size of the 5 : 7 MMR determined

the circular planar problem fore= 0.02 (=mean initial proper
eccentricity of nine escaping particles), which is approximate
NSNEPTUNIAN REGION II 109
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0.12 AU. The crossing time (the time elapsed fromt = 0 to
the first crossing of Neptune’s orbit) varied between 322
1469 Myr with a mean value of 666 Myr. After becoming Ne
tune grazers, particles were deactivated when some stoppin
teria were satisfied (either the heliocentric distance being la
than 100 AU or the test particle being closer than 0.01 Hill rad
to any planet), after on average 13 Myr.

Other escapes (one per resonance) occurred at locatio
the 8 : 11 (a = 37.23 AU, crossing time 641 Myr), 7 : 10 (a =
38.19 AU, 620 Myr), and 9 : 13 (a = 38.47 AU, 1419 Myr) res-
onances. The longer crossing time at the 9 : 13 MMR is du
its higher order (4) and smaller chaotic diffusion rate. (See
erences below). The eccentricity was significantly excited
the 11 : 16 Neptune MMR (a = 38.654 AU) and also at the
three-body resonances with Neptune and Uranus: 7N−U− 7
(resonant angle, 7λN − λU − 7λ+$ ) and 3N+ U− 7 (3λN +
λU − 7λ+ 3$ ). These latter resonances are placed at 37
and 37.878 AU, respectively.

The escape mechanisms from the low-e region 37–39 AU
shown in Fig. 3 are analogous to those of inner belt aster
to Mars-crossing orbits (Miglioriniet al. 1998, Morbidelli and
Nesvorný 1999). The analytic estimates of the resonant s
LCE, and diffusion rate at the MMRs in the asteroid belt (Murr
and Holman 1997, Murrayet al.1998, Nesvorn´y and Morbidelli
1999) apply also to the KB.

The speed of chaotic evolution at a MMR depends on
strength (Murray and Holman 1997): for some resonances (
on the borders of the 7 : 12 Neptune MMR located at ab
43.4 AU) the speed of the chaotic diffusion is enough to enla
the initial e to the critical value above which the orbit becom
Neptune grazing and the body escapes in 108 yr (Fig. 1). There
thus must be many test particles escaping from weaker MM
on longer time intervals. Hence we believe that the thin MM
are responsible for escapes in many narrow regions ina found by
Duncanet al. (1995) for 45< a < 47 AU. Moreover, this also
means that if there were not not enough new bodies injected
the resonances (by collisions or mutual interaction between
KBOs), escaping bodies must open narrow gaps or at least c
local density reductions at the resonant semi-major axes.

For a weak MMR and the resonant body with initially sm
e, the process of slow chaotic diffusion normally results only
a moderate change ofe (andi ) over the age of the Solar System
Consequently, this could have caused a chaotic “processin
KBOs in e (andi ) and an alteration of the original character
tics of the KB. By this we mean that the KB is not dynamica
“frozen.” Whatever structures has been formed in it (collisio
families, for example) have dispersed with time and sho
have depended with other slowly diffusing (ine andi ) resonant
bodies. The first traces of such a process are being recent
vealed on the much better known distribution of asteroids in
main belt (Milani and Nobili 1992, Morbidelli and Nesvorny
1999).

Assuming a uniform distribution of KBOs in the interv
ly
45< a < 47 AU ande= 0.1, the number ofresonantobjects
must be proportional to the total phase space volume occupied by
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resonances. In Fig. 2 we can identify about 80 peaks with LC>
10−6.8 yr−1 in this interval. These peaks have a total wid
of about 0.512 AU, which means that about 26% of KB
at 45< a < 47 AU and e= 0.1 must be chaotic with LCE
> 10−6.8 yr−1. Therefore, a significant chaotic evolution ine
(andi ) may be expected for this part of the KB.

Outside the MMRs (Fig. 3), the proper elements of test pa
cles almost do not change. The small variation of propera and
e for nonresonant orbits validates our calculation of proper
ments as 10-Myr averages; these orbits are expected to be
to regular. Note that there is no tendency to alter the propea,
and thus it is practically impossible for the initially nonreson
particles to reach one of the diffusion tracks at resonances

This result confirms the conclusion of Duncanet al. (1995)
that under the perturbations of four outer planets most loe
orbits with initiala between the outer edge of the 3 : 4 Neptu
MMR (37 AU) and the inner edge of the 2 : 3 MMR (39 AU) a
stable over 4× 109 yr. Because of this orbital stability, one wou
expect that there exist KBOs with 37< a < 39 AU,q > 35 AU,
andi < 10◦. Nevertheless, observations have not provided a
gle object (among 63 known KBOs with good orbits in Septe
ber 1999) with orbital elements in this interval.4 Duncanet al.
(1995) suggested that some mechanism other than the long
gravitational effects of four outer planets must have cleare
The effect of Neptune-scattered large planetesimals (Petitet al.
1999), sweeping MMRs (Malhotra 1995), or sweeping sec
resonances (H. F. Levisonet al.1999, preprint) are three differ

ent possibilities of how this might have been achieved duri
the primordial stage of the KB formation.5

4 The recent recovery of 1998 SN165 (Gladmanet al.2000b) suggests that this
object has the orbital elementsa = 38.1 AU,e= 0.05, andi = 5◦. This indicates
that the concerned region is not completely void of objects and probably h
a considerable number of KBOs. Still, based on the discovery rate, the regio
underpopulated in comparision with other stable places in the KB.

5 We have also checked another possibility and in this context recall the
ticular geometry of Pluto’s orbit: the argument of Pluto’s perihelion oscillat
around 90◦ with an amplitude of 22◦. This, together with the equation of ellipse

r = a(1− e2)

1+ ecosv
, (3)

wherer and v are the heliocentric distance and true anomaly of Pluto,a =
39.45 AU ande= 0.25, shows that Pluto intersects the ecliptic plane close
v = ±90◦ at a heliocentric distance of about 37 AU. Consequently, the lowe
and low-i objects witha ∼ 37 AU may encounter Pluto when it passes throug
ecliptic whenever the phasing of orbital revolutions is correct. However,
numerical simulation with five planets (Jupiter to Pluto) showed that Plut
effect over the age of the Solar System is almost negligible in the interval
39 AU, the escape rate being the same as in the simulation with four plan
This is due to the fact that Pluto’s inclination (17.2◦) and eccentricity (0.25)
determine a relatively high velocity at intersection with the orbit ata = 37 AU
ande= i = 0:

V = 2π

√
2

1− cosiP
a

= 0.3 AU/yr = 1.5 km/s, (4)

and the deflection of passing trajectories—proportional toV−2—is small. In
fact, Pluto gravitational sweeping has a negligible effect on the distribution
objects in the KB (Gladmanet al.2000a), with the exception of moderately an
high-inclined Plutinos (Nesvorn´y et al.2000).
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3. THE 1 : 2 MMR WITH NEPTUNE

The 1 : 2 resonant angleσ1:2 = λN − 2λ+$ oscillates—
unlike in the case of most other MMRs—around a center
is neither 0◦ nor 180◦. Such a case is usually referred to as
asymmetriclibration, and is found exclusively in the 1 : 1 MMR
(tadpole orbits) and the MMRs exterior to a planet of the ty
1 : 2, 1 : 3, 1 : 4, etc. (Beaug´e 1994, Morbidelliet al.1995). Con-
sequently, the range ofAσ accessible to stable resonant libratio
in the 1 : 2 MMR with Neptune is smaller.

In the following experiment, the initial angles of test pa
ticles were chosen so thatσ1:2 = σ0(e), $ = $N, andÄ =
ÄN, whereσ0(e) is the asymmetric libration center for givene.
Figure 4a showsσ0(e) computed by a semi-numerical method
the restricted three-body model with Neptune on a circular
planar orbit. Figure 4b shows an analytically computed m
mum possibleAσ (e) of tadpole orbits. ForAσ exceeding this
value, the motion happens on horseshoe trajectories.

We have run simulations for two sets of initial conditions:

(1) 707 test particles with 47.5≤a≤ 48.5 AU (1a=
0.01 AU), e= 0.04, 0.1, 0.2, 0.25, 0.3, 0.35, 0.4 (101 test pa
cles at eache) andi = 5◦;

FIG. 4. (a) The asymmetric center (σ0) of the 1 : 2 MMR as a function of
eccentricity. The other center is placed symmetrically in the interval [−π, 0].
(b) The maximum amplitude of tadpole orbits determined as half-width of
libration island enclosed by separatrices. The discontinuity ate= 0.5 is due to
dthe change in the resonant topology introduced by collisions with Neptune. The
dashed line approximates the half-width of the tadpole island fore> 0.5.
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On the other hand, we still cannot exclude the possibility that
1997 SZ10 and 1996 TR66 are captured scattered disk objects

6 The assumed orbital elements of 1997 SZ10 and 1996 TR66 on 8/10/
1999 (JD 2451400.5) area= 48.6752 AU, e= 0.37419, i = 11.768◦,M =
11.393◦, ω = 341.122◦, Ä = 9.422◦, anda = 47.3227 AU,e= 0.38081,i =
12.3906◦, M = 35.732◦,ω = 311.325◦,Ä = 342.993◦, respectively. Note also
that B. Marsden give similar solutions for the orbital angles of 1997 SZ10 and
1996 TR66.

7 The uncertainty domains of the orbital elements are such that the true semi-
major axes of 1997 SZ10 and 1996 TR66 may be as far as 0.4 and 2 AU from
RESONANCES IN THE TR

(2) 606 test particles witha = 47.95 AU, 0≤ e≤ 0.4
(1e= 0.004) and 5≤ i ≤ 30◦ (1i = 5◦, 101 test particles a
eachi ).

In the first set we sampled the resonant orbits with smalli ; the
dynamics at largeri was explored in the second set.

As in N&R00, test particles were numerically integrated w
four outer planets (Jupiter to Neptune) for 108 yr by the symmet-
ric multistep integrator. The initial conditions of the planets w
taken from JPL DE403 ephemeris for the date JD 2449700.5
respect to the mean ecliptic and equinox J2000. The time s
of 40 days for the planets and 200 days for the test particles
used. A smoothing filter was applied toa expισ , eexpι$ and
i expιÄ (ι = √−1). This procedure suppressed periods sma
than 5000 yr. See N&R00 for a more detailed description of
experimental setup.

3.1. Regular and Chaotic Dynamics for Small e

Estimate of the maximum LCE and the minimum distanc
Neptune in 108 yr are plotted as the set (1) of initial conditio
in Fig. 5. The color coding in Fig. 5a is the same as that use
N&R00: test particles escaping within the integration time s
are shown in yellow while test particles with smallest LCE
shown in blue. In Fig. 5, we have compensated the scale onx
axis for the short-periodic variations of the semi-major axis w
a shift of 0.18 AU ina, so that the test particles withAσ ∼ 0 are
near the true resonant center at 47.8 AU.

In Fig. 5a, we plot the libration centers and separatrices of
pole orbits (bold vertical line at 47.8 AU and bold lines joini
each other ate= 0.04 and delimiting the “V”-shaped resona
region). The exterior bold lines are the limits of horseshoe
bits. The Kozai resonance is shown by the thin full line.
have computed its location fromf$ − fÄ = 0, where f$ (a, e)
and fÄ(a, e) were numerically computed in our experime
The Kozai resonance intersects the libration center of the
Neptune MMR ate∼ 0.38, but we were unable to plot its loc
tion at 0.35< e≤ 0.38, because our initial conditions did n
sample this interval.

The dashed line in Fig. 5a shows the 5 : 1 commensurab
between the resonant frequency and the frequency of the
λU − 2λN. The 4 : 1 commensurability between the same an
is at larger eccentricities and its location ate= 0.35 is indicated
by two arrows. The 4 : 1 three-body resonance has the same
shaped form as the 5 : 1 resonance and intersects the libr
centers of the 1 : 2 Neptune MMR ate∼ 0.32.

From 191 KBOs currently registered in the Asteroid Orb
Elements Database of the Lowell Observatory (ftp://ftp.low
edu/pub/elgb/astorb.html), six objects are close to the
Neptune MMR (46.5< a < 49 AU). Computing the smoothe
orbital elements (i.e., the orbital elements from which the s
periodic variations has been removed—see N&R00) of th
objects, we find that only one object—1997 SZ10—falls wit

the interval ofa andeshown in Fig. 5. A pair of two-headed ver
tical arrows has been placed in this figure, indicating the extre
NSNEPTUNIAN REGION II 111
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of filtereda ande of 1997 SZ10 (determined from a numeric
integration of its orbit over 107 yr). This figure indicates tha
this object is on a horseshoe orbit withAσ ∼ 150◦, which is
unstable on 108 yr. However, there is a large uncertainty in th
semi-major axes of this and the other five bodies that were c
puted from small observational arcs, so that conclusions wo
be premature. In contrast, we believe from the following r
sons that two of the above six objects are on stable reso
orbits.

Our argument is based on the orbital angles of 1997 SZ10
1996 TR66, which according to E. Bowell (personal comm
nication) are quite determinate,6 conversely to the semi-majo
axes, which have 1-σ uncertainties of∼0.07 and∼0.31 AU,
respectively. It is interesting to note that the present value
σ1:2 of 1997 SZ10 (at JD 2449700.5) is−69◦, which is almost
exactly the value of the second resonant centerσ0(e) ∼ −67◦

at e= 0.36 (Fig. 4a). This coincidence is quite surprising b
cause the orbital angles were not deliberately chosen to put 1
SZ10 close to the libration center. This shows that it is quite p
sible that this object is in fact a stable resonant body with
semi-major axis erroneously (by some 0.2–0.3 AU) determi
from observations. Moreover, the second object—1996 TR6
which falls close to the 1 : 2 Neptune MMR hasσ1:2 = −62◦,
again very close to the correspondingσ0(e) for e∼ 0.38.7 This
should not be a mere coincidence because the probability
σ1:2 of a discovered object is within 5◦ from to one of the li-
bration centers (as it happens for both 1997 SZ10 and 1
TR66) is 1 in 18. Indeed, for nonresonant objects,σ1:2 circulates
and receives values between 0◦ and 360◦ with equal probability.
Consequently, at the time of observation, the nonresonant bo
would be uniformly spread inσ1:2 between 0◦ and 360◦.

As we will show in Section 3.3, the stable resonant obje
with e∼ 0.3 are expected to move within±30◦ from σ0(e=
0.3). At e∼ 0.36–0.38, where the limit of the stable tadpo
motion is smaller than ate= 0.3 (Fig. 5), the stable resonan
objects must always stay closer than 10◦–20◦ to σ0, exactly
at a place where 1997 SZ10 and 1996 TR66 are currently
cated. Moreover, if both objects are resonant bodies, they p
ably also fall into the Kozai resonance since, at present,ω =
341◦ for 1997 SZ10 andω = 311◦ for 1996 TR66, and for
e= 0.38 the stableω libration happens aroundω0 = 325◦

(Section 3.4).
-
ma
their current nominal orbits, respectively, without significantly alternating their
orbital angles (J. Virtanen and K. Muinonen, personal communication).
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(Duncan and Levison 1997). Such bodies spend about 20
their lifetimes within 5◦ from σ0 (H. Levison, personal commu
nication). So, the probability of seeing captured objects wh
1997 SZ10 and 1996 TR66 are currently located is small bu
completely negligible.

In Fig. 5a, the LCE is smaller than∼10−7 yr−1 in the central
region of the 1 : 2 MMR, which shows orbital regularity com
parable to that of the central region of the 2 : 3 MMR (N&R0
their Fig. 2). The central region is the widest fore= 0.3, where
it accounts for almost 0.4 AU ina. This is much less than th
resonant size computed by Malhotra (1996) for the samee in
the circular and planar model with Neptune. Our computa
shows that the central region of the 1 : 2 MMR ate= 0.3 is
similar in size to the stable region of the 2 : 3 MMR.

For smaller and largere, the region of small LCE of the 1 : 2
MMR shrinks. There is a large gradient of the period ofσ with
respect toe so that ate= 0.1, the libration frequency is com
parable to the perihelion and node frequencies. Fore< ∼ 0.1,
the tadpole region is very narrow and theAσ ∼ 0 tadpole or-
bits are destabilized on short time scales. These orbits
evolve alternating between circulation and horseshoe regi
with short intermittences of tadpole librations. The resonant
tion at e∼ 0.4 and smallAσ is moderately chaotic (LCE∼
10−6.5 yr−1). This is not because of the effect of Neptune e
counters (Fig. 5b) but rather an influence of the Kozai resona
In Section 3.4, we show by long-term numerical simulation t
the resonant motion is unstable over 4× 109 yr whene>∼0.4.

One can also note in Fig. 5a that the chaos is enhanced a
4 : 1 and 5 : 1 three-body resonances, where LCE∼10−5.8 and
∼10−6.2 yr−1, respectively. These values are similar to tho
found at the same three-body resonances in the 2 : 3 Nep
MMR (N&R00, their Fig. 2a). Here however, the resonant p
sitions are quite different (4 : 1 resonance is “inner” to 5 : 1 r
onance), with a shape following convex lines (5 : 1 is shown
dashed line in Fig. 5a). This particular configuration is rela
to the fact that inside the asymmetric island of the 1 : 2 MM
the libration period increases when approaching the sepa
ces while at the 2 : 3 MMR, the libration period decreases w
approaching to the separatrices.

The horseshoe orbits in the 1 : 2 MMR are generally cha
(ln1(t)/t = 10−5–10−6 yr−1 with t = 108 yr). Although we
have not investigated the sources of this chaos in detail, one

son could be the large period ofσ for horseshoe orbits (roughly

FIG. 5. The maximum LCE (a) and minimum distance to Neptune (b) c
conditions). Thex-axis scale was corrected for the difference between initial
resonant center and the limits of tadpole and horseshoe orbits are shown by
resonance is indicated only fore= 0.35). The current orbital elements of 1997
arrows delimit the maximum and minimum values of itsa ande on 107 yr, but s
minimum distance to Neptune is larger than 20 AU forAσ ∼ 0 ande> 0.25.

FIG. 12. The maximum LCE (a) and minimum distance to Neptune (b)
conditions). Thex-axis scale was corrected for the difference between initi
The resonant centers and separatrices are shown by bold lines. Inner reso
vertical arrows delimit the maximum and minimum values of its filtereda ande
distance to Neptune does not exceed 15 AU and is less than 10 AU fore< 0.1.
NSNEPTUNIAN REGION II 113
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double of the period for tadpole orbits for the samee). Thomas
and Ferraz-Mello (2000, in preparation) have shown that
secondary and secular resonances are frequently present
horseshoe regime of the 1 : 1 MMR with a planet.

Figure 6 shows the measures of chaotic evolution of the or
elements,δAσ (a),δe (b), andδi (c), and of frequencies,δ fσ (d),
δ f$ (e), andδ fÄ (f). These quantities have been determined
the same way as in N&R00 (their Eqs. (2)–(4)).δAσ , δe, and
δi are the chaotic changes of orbital elements over 45 Myr.δ fσ ,
δ f$ , andδ fÄ are the relative changes of frequencies over
same time interval.

Comparing Figs. 5 and 6, one can see the correlation bet
the values of the LCE and the measures of chaotic evolutio
orbital elements. For example, the orbits are very stable in
core of the 1 : 2 MMR where the LCE is small. Figure 6 is nev
theless more rigorous concerning the orbital stability/instabi
specifically:

(1) The most stable place in the 1 : 2 MMR is ate= 0.3,
whereδAσ = 0.1◦ per 45 Myr for Aσ < 30◦ (Fig. 6a). There
the expected change ofAσ over 4.5 Byr is 1◦. Even ife= 0.3,
the maximumAσ available for tadpole orbits is 70◦ (Fig. 4b),
for Aσ > 30◦, such orbits are already unstable and escape
the resonance.

(2) Stable tadpole motion practically does not exist fore<
0.1 and fore> 0.4, whereδAσ > 1◦ per 45 Myr. While in the
former case, the test particles may still survive several bil
years on horseshoe orbits, because theire is small, in the latter
case, the test particles are efficiently removed from the reson
by encounters with Neptune.

(3) The chaotic structure of the resonant region at inter
diate eccentricities (0.1< e< 0.4) is complex. Apart from the
resonances shown in Fig. 5a, there are the 2(g− s8) = 0 sec-
ular resonance ate∼ 0.2 and the 2g− s− s8 = 0 secular res
onance ate∼ 0.3, for Aσ ∼ 0 (g ands are the perihelion an
nodal frequencies of test particle, andg8 = 0.673 arcsec yr−1

ands8 = −0.691 arcsec yr−1 are the perihelion and nodal fr
quencies of Neptune).

(4) The horseshoe orbits fore>∼0.3 are generally unstab
on 108 yr (yellow in Figs. 5a and 6a–6c). Also fore< 0.3,
the chaotic evolution of horseshoe orbits is large (Figs. 6a
and many objects are expected to escape from the resonan
omputed fori = 5◦ and severala, e in the 1 : 2 MMR with Neptune (set (1) of initial
osculating and mean resonant semi-major axis due to short-period perturbations. The
bold lines. Inner resonances are denoted by thin lines (the location of the 4: 1 three-body
SZ10 would indicate a horseshoe orbit unstable on 108 yr (the two-headed vertical

ee the discussion in text). In the central resonant space, LCE< 10−7 yr−1. The

computed fori = 5◦ and severala, e in the 3 : 4 MMR with Neptune (set (1) of initial
al osculating and mean-resonant semi-major axis due to short-period perturbations.
nances are denoted by thin lines. The KBO 1995 DA2 has a stable orbit (the two-headed
on 107 yr). In the central resonant space, LCE< 10−7 yr−1 and the minimum

increasing their orbitale.
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FIG. 6. The changes of orbital elements,δAσ (a),δe (b), andδi (c), and of the frequencies,δ fσ (d), δ f$ (e), andδ fÄ (f), measured per 45 Myr, for the set (1)
of initial conditions in the 1 : 2 Neptune MMR. The color coding is the same in all panels but (a). The low-Aσ tadpole orbits are stable over the age of the Sol
System because the chaotic evolution of orbital elements/frequencies is small there. Apart from the resonances shown in these figures, there are the 2(g− s8) and
2g− s− s secular resonances located ate∼ 0.2 and∼0.3 nearA ∼ 0, respectively. The horseshoe orbits are generally unstable with ejection times indir
8 σ

proportional to the initiale.
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3.2. The Dynamics at Aσ ∼ 0 and Larger i

The set (2) of initial conditions was designed to study the
bital dynamics near the libration centers. Indeed, the test p
cles witha = 47.95 AU had initiallyAσ < 20◦ for e> 0.1 (this
lowere limit depends oni ). Fore< 0.1, where the tadpole orbit
practically do not exist, the studied orbits move in a horses
regime. Figure 7a shows the maximum LCE. Figure 7b sho
the minimum distance from Neptune over 108 years fori = 10◦.

The particles on the left side of the full thick line in Fig. 7
are chaotic with LCE∼10−5.5–10−6.5 yr−1. The full thick line
was empirically traced through LCE= 10−6.5 yr−1. On the right
side of this line, log(ln1(t)/t) almost linearly decreases wit
log t and the minimum value of the LCE in Fig. 7a (∼10−7 yr−1)
is dictated by the integration time span. There is only one w
determined structure visible in the plot: fore> 0.36 andi >
15◦, ln1(t)/t converges to∼10−6.5 yr−1, where the Kozai reso
nance is located. The minimum distance from Neptune smoo
decreases withe in the regular region and drops to 15 AU in th
chaotic low-e region (Fig. 7b).

Measures of chaotic diffusion (Fig. 8) reveal two secular re
nances in the “regular” region. The 2(g− s8) secular resonanc
is at e= 0.185 and the 2g− s− s8 resonance is ate∼ 0.3.
The full thin lines in Fig. 8 were plotted at 2(f$ − s8) = 0
(denoted by 2(g− s8)) and 2f$ − fÄ − s8 = 0 (denoted by
2g− s− s8), respectively, wheref$ (e, i ) and fÄ (e, i ) were
determined numerically in our experiment. The dashed li
were empirically traced at approximate positions of separa
ces of the 2g− s− s8 secular resonance. This resonance ov
laps with the Kozai resonance fori >∼20◦. The resonant an
gles, 2($ −ÄN) of the former and 2$ −Ä−ÄN of the latter,
clearly librate for test particles in these resonances. Figu
shows the time evolution of 2$ −Ä−ÄN (9a) and ofe(9b) for
the test particle with initial conditions:a = 47.95 AU,e= 0.304
andi = 10◦. The evolutions are correlated as it is expected
pendulum-like coupled motion of the action and resonant an

The total variations ofeandi in the “chaotic” region, extrap-
olated to 4.5 Byr, are 0.2◦ and 10◦, respectively. This suggest
a prevailing stability of primordial bodies since the motion
horseshoe regime gets strongly unstable only fore> 0.3. The
“regular” region at smallAσ is generally stable fore< 0.35 and
i < 25◦. The secular resonances may potentially destabilize o
the orbits withi > 25◦. This instability limit of i is about the
same as found by Duncanet al. (1995) for other resonances.

3.3. A Simple Model of Chaotic Diffusion

A one-dimensional random-walk model of chaotic diffusi
in the 2 : 3 Neptune MMR was described in N&R00 (see th
Section 4 for details). Here, we use the same model for
1 : 2 MMR.

For a given initial value ofAσ , 1000 test particles were sim
ulated withe= 0.3 and i = 5◦. Assuming a random walk in

Aσ , we advanced the orbits of these test particles by apply
random kicks of the size ofδAσ (taken from Fig. 6a) to their
NSNEPTUNIAN REGION II 115
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FIG. 7. The maximum LCE (a) and the minimum distance to Neptu
(b) for the set (2) of initial conditions in the 1 : 2 Neptune MMR (initiala=
47.95 AU). The bold line in (a) schematically separates two regions w
different strengths of chaos. For test particles in the large-e region (denoted
by “regular”), ln1(t)/t does not converge to a limit value on the integ

ingtion time span. Conversely, in the low–e region (denoted by “chaotic”), LCE
> 10−6 yr−1.
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FIG. 8. The changes of orbital elements,δAσ (a),δe (b), andδi (c), and of frequencies,δ fσ (d), δ f$ (e), andδ fÄ (f), measured per 45 Myr, for the set (2) o
initial conditions in the 1 : 2 Neptune MMR (initiala = 47.95 AU). The color coding is the same for all panels but (a). The 2(g− s8) secular resonance is show
by the thin line ate= 0.185. The center (full thin line) and approximate positions of the separatrices (dashed thin lines) of the 2g− s− s8 secular resonance ar

shown neare= 0.3. The Kozai resonance is ate∼ 0.38 and overlaps with 2g− s− s8 for i > 20◦.
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RESONANCES IN THE TR

FIG. 9. The evolution of 2$ −Ä−ÄN (a) ande (b) for a test particle
starting witha = 47.95 AU, e= 0.304, andi = 10◦. Note that the libration of
the angle with a period of∼40 Myr is correlated with oscillations ofe. This
particle is in the 2g− s− s8 secular resonance.

Aσ . A test particle was deactivated ifAσ > 85◦. This simula-
tion was repeated for 51 different values ofAσ regularly spaced
between 0 and 50◦. The total volumeV(50◦) occupied by these
orbits is 36.1 AU× deg. The number of surviving test particle
was then rescaled to a total number of 1000 particles initi
placed in the interval 0≤ Aσ ≤ 50◦, and uniformly distributed
in a, λ,$ , andÄ.

Figure 10 shows the initial density profile of test particl
(dashed line) and the eroded density profile att = 4 Byr (bold
line denoted by “+0”). Sixty-four percent of the test particle
survived 4 Byr. Most of the escapes happened forAσ > 30◦, and
for Aσ > 50◦ more than 90% of test particles left the resonan
According to Fig. 10, and assuming that only the dynami

diffusion was acting on resonant bodies, the maximum dens
of the current resonant population should be atAσ ∼ 30◦.8

8 We show in Fig. 10 the distribution of surviving particles vs theinitial Aσ ,
which is not much different from the distribution of surviving particles vs th
final Aσ . The density is still peaked atAσ ∼ 30◦ and decreases somewhat mor
steeply to largerAσ than is shown in Fig. 10.
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The following qualification is in order. We have assumed
the model that the resonant population was initially uniform
the semi-major axis and angles. This implies that the numbe
initial objects atAσ was proportional to the volume in the pha
space occupied by orbits withAσ (see N&R00, Section 4). Th
initial density has an increasing trend withAσ (dashed line in
Fig. 10), simply because the resonant orbits with largerAσ oc-
cupy larger volume in the phase space and are more frequ
sampled. It is generally believed that the model of sweep
resonances and the resonant capture in MMRs in the primo
KB (Malhotra 1995) should have produced a nonuniform d
tribution in Aσ of the initial population of the 1 : 2 MMR. As
discussed in N&R00, this is not a result of the process of re
nant capture, but mainly a consequence of the smaller volum
small-Aσ orbits and the dynamical instability at largerAσ . This
is the reason why Malhotra’s captured population is peake
moderate amplitudes. In general terms, we would expect th
the capture simulation carried out by Malhotra (1997) for
2 : 3 MMR were repeated also for the 1 : 2 MMR, the maximu
resonant density of captured KBOs would be at slightly lar
Aσ than that in our Fig. 10 (fore= 0.3) because of the sho
time span used in Malhotra’s capture simulations for which
bits at largeAσ are still stable. For this reason, our assumption

FIG. 10. The number of surviving particles att = 4 Byr in the 1 : 2 MMR
(e= 0.3 andi = 5◦) vs initial Aσ . Dashed line shows the initial density distr
bution in number of particles per 1◦. The other lines show the eroded dens
distributions assuming a random walk at 0< t < 4 Byr with a local rate given
by δAσ + δAkick

σ (see text). The value ofδAσ is shown in Fig. 6a. The bold
line denoted “+0 deg” corresponds toδAkick

σ = 0. The thin lines correspond t

evalues ofδAkick

σ ranging between 1◦ per 45 Myr (denoted “+1 deg”) and 5◦ per
45 Myr (denoted “+5 deg”).
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initially uniform semi-major axes and angles is approxima
valid for the resonance sweeping scenario.

The other curves in Fig. 10 show the results of additional
periments adding toδAσ (which is the chaotic diffusion induce
by gravitational perturbations of four major planets only),
evolution of Aσ due to random kicks produced by mutual c
lisions or dynamical scattering:δAkick

σ = 1◦ per 45 Myr (53%
particles survived), 2◦ per 45 Myr (41%), 3◦ per 45 Myr (31%),
and 5◦ per 45 Myr (13%) (see Section 4 in N&R00). The la
value shows thatδAkick

σ > 5◦ per 45 Myr is needed in order t
reduce the original population to 1/10.

Of course, this is a very rough model of the real collis
dynamics in the 1 : 2 MMR because it does not account for
disruption of bodies and for the resulting changes in the
distribution. In such a case, the loss of resonant KBOs
given size may have been partially compensated from disru
larger bodies.

Assuming that the dependence of the primordial KBO den
on heliocentric distancer was proportional to∼r−2 (Tremaine
1990) and that the primordial excitation in the 2 : 3 and 1
MMRs efficiently randomized orbital eccentricities in the int
val 0< e< 0.35, the ratio between current populations of
most stable places in the resonances (e= 0.2 in 2 : 3 ande= 0.3
in 1 : 2) is

1

2

V(A∗2:3)

V(A∗1:2)

P2:3
surv

P1:2
surv

(
a1:2

a2:3

)2

, (5)

where V(A∗2:3)=V(127◦)= 116.6 AU× deg (N&R00),
V(A∗1:2)=V(50◦)= 36.1 AU× deg, P2:3

surv= 0.81, P1:2
surv= 0.64,

a2:3 = 39.5 AU, anda1:2 = 47.8 AU. Psurv= Nsurv/Nprim is the
relative fraction of objects surviving att = 4 Byr with respect
to the number of primordial objects. The factor 2 in the den
inator is a result of two asymmetric libration centers in the 1
MMR against one center in the 2 : 3 MMR.

Evaluating Eq. (5) indicates that there should currently e
three times more objects withe= 0.2 in the 2 : 3 MMR than with
e= 0.3 in the 1 : 2 MMR. The same calculation with surviv
percentagesP2:3

surv and P1:2
surv evaluated in the experiments wi

δAkick
σ = 3◦ per 45 Myr results in the ratio of 4.25.
There are∼15 KBOs and Pluto observed at present on sta

orbits in the 2 : 3 MMR (N&R00) and two likely candidates f
the 1 : 2 MMR resonant bodies (1997 SZ10 and 1996 TR6
Section 3.1). The apparent observational ratio between the
and 1 : 2 MMR populations is thus 8. As the selection obse
tional effect probably contributes by a factor of 0.3 (Jewittet al.
1998), the intrinsic (real) ratio between these two populat
should be about 2.5, in a reasonable agreement with the
predicted by Eq. (5) withδAkick

σ = 0.

3.4. A Long-Term Simulation of the 1 : 2 Resonant Orbits
In order to verify the long-term stability of orbits in the cen
tral region of the 1 : 2 MMR we simulated 40 test particles w
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initially small Aσ over 4 Byr. We used theswift rmvs3 inte-
grator (Levison and Duncan 1994) with a time step of 0.8 yr a
included the perturbations of four major planets. The plane
initial conditions were taken from the JPL DE403 epheme
at JD 2450814.5, with respect to the invariable plane of
LONGSTOP 1B simulation. The initial conditions of test pa
ticles werea = 47.5 AU, i = 2◦, ande ranging from 0.04 to
0.45 (1e' 0.01). We set initially$ −$N = 0,Ä−ÄN = 0,
and chose the value of the initial mean anomaly in orde
haveσ1:2 = σ0(e), whereσ0 stands for the asymmetric cent
located between 0◦ and 180◦ for the correspondinge (Fig. 4a).
This choice of initial conditions implies that all particles wi
e> 0.13 haveAσ < 30◦.

Most simulated orbits with smallAσ survived over the age o
the Solar System without any significant change of their m
(Aσ , e, i ). The only particles with initially smallAσ that escaped
during the simulation were those initially located ate> 0.41.
At these eccentricities, the overlap of inner resonances (as
4 : 1 three-body and Kozai resonances) generates a strong c
driving particles to the Neptune-crossing orbits.

For 0.37< e< 0.40, orbits are affected by the Kozai re
onance. In contrast with the classical Kozai resonance, thω
librations do not occur around 90◦ or 270◦, but rather around
∼140◦ or∼320◦ (Fig. 11). This is a consequence of the asy
metric libration ofσ1:2. For 0.37< e< 0.40,σ librates around
σ0∼ 65◦.

The shift of the equilibrium points of the Kozai resonance
the 1 : 2 resonance can be explained on the basis of a si
model. Consider the HamiltonianHresof the averaged restricte
three-body problem, with the massive body on a circular

FIG. 11. Evolution of a test particle in the 1 : 2 Neptune MMR. The initi
conditions (initiale= 0.3778) were chosen so that the orbit of this particle
characterized by small-Aσ libration aroundσ0 = 65◦. This particle evolves in

-

ith
the Kozai resonance withω libration around∼140◦. This libration is correlated
with coupled oscillations ofe andi .
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hand, the KB is less well known than the asteroid belt and new
bodies in the 3 : 4 Neptune MMR may be discovered soon.

9 The assumed orbital elements of 1995 DA2 on 8/10/1999 (JD 2451400.5) are
RESONANCES IN THE TR

planar orbit. Expanding its Keplerian part around the reson
semi-major axisa0, and the perturbing function up to the seco
degree in inclination, we can write

Hres= − 3

2L2
0

L2−m1

×
[

R0+ η
2

2
(R1+ R2 cos 2σz+ R3 sin 2σz)

]
, (6)

wherem1 is the mass of the perturbing body,L0 = √a0, L ∝ Sz,
η = sini /2∝ √Sz, andSz is the action conjugated toσz = σ +
ω. The coefficientsRi are functions ofa, e, σ and we evaluate
them at the MMR’s libration center:Ri = Ri (a0, e0, σ0) (Roig
et al.1998).

This one degree of freedom Hamiltonian can be written a

Hres= −
(

3

2L2
0

L2+m1
η2

2
R1

)
+m1

η2

2
Rcos(2σz+ 2φ), (7)

with

R = ±
√

R2
2 + R2

3 (8)

tan 2φ = −R3

R2
. (9)

The choice between the plus and minus signs ofR is arbitrary.
The signs ofR2 and R3 determine two complementary valu
of 2φ. After fixing η, the resonant Hamiltonian has the form
the harmonic oscillator

H = αJ2+ β cosψ, (10)

with J ∝ Sz, ψ = 2σz+ 2φ, andα ' −3L−2
0 /2< 0.

The location of stable equilibrium points depends on the s
of β. If β > 0, the stable point is atψ = 0, while if β < 0, the
stable point is located atψ = π . This means that

R> 0⇒ ω = kπ − φ − σ0
(11)

R< 0⇒ ω = 2k+ 1

2
π − φ − σ0 ,

wherek is integer.
Whenσ0 = π , as in the case of the 2 : 3 MMR with Neptun

then R2 > 0 andR3 = 0. In this case,R> 0 implies thatφ =
±π/2, which givesω = (2k− 1)π/2. If, on the other hand,R<
0 thenφ = 0 and once againω = (2k− 1)π/2. These constitute
the common libration centers of the Kozai resonance at 90◦ and
270◦ (the same result holds for the MMRs withσ0 = 0).

If howeverσ0 of a MMR is neither 0 norπ , the Kozai res-
onance does not have libration centers at 90◦ and 270◦. As
an example, consider the asymmetric libration center of
1 : 2 MMR located ata0 = 47.797 AU, e0 = 0.383, andσ0 =
66.4◦. In this case,R2 < 0 andR3 < 0. If R> 0 thenφ = 329◦
andω = 180k− 35.4◦, while if R< 0 thenφ = 59◦ andω =
90(2k+ 1)− 125.4◦. The stable centers of the Kozai resonan
NSNEPTUNIAN REGION II 119
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are at 144.6◦ and 324.6◦, respectively, in good agreement w
values observed numerically (Fig. 11).

The choice of initial conditions in our simulation did not gu
antee the occurrence of asymmetric librations fore< 0.13. The
width of the asymmetric island is narrow for smalleand all nine
particles in the run were initially librating with largeAσ around
the symmetric saddle point at 180◦ (horseshoe orbits). The am
plitudes of horseshoe orbits were chaotically changing betw
120◦ and 180◦, and only rarely (and for at most several 106 yr)
did temporary captures in the asymmetric islands occur.

We have performed additional simulations with orbits st
ing at smalle. First, we have found by several trials that p
manent tadpole orbits do not exist in practice fore< 0.07 (for
e> 0.07 it is possible to find tadpole orbits that are stable o
4 Byr). Next, we simulated several test particles with ini
e= 0.01 and 0.05. For each value ofe, we have obtained 10 ob
jects showing a resonant behavior, typically alternating betw
horseshoe orbits and circulation. Theireandi irregularly evolve
in the intervals 0–0.2 and 0◦–10◦, respectively. Interestingly, th
irregular motion of some of these test particles was stabilize
a horseshoe regime ate∼ 0.15–0.2,i ∼ 5◦–7◦, andAσ ∼ 100◦.
From the test particles with initiale= 0.01, only one escaped
while for e= 0.05 three particles escaped. This correspond
the general fact that the orbits starting with initially largere get
destabilized faster by the chaotic eccentricity drift. We estim
that the median lifetime of orbits ate= 0.05 in the 1 : 2 MMR
is slightly larger than the age of the Solar System. In summ
we found that the resonant space at lowe in the 1 : 2 MMR a
accounts for about 0.3 AU ina. From 47 resonant test particl
simulated withe< 0.12 only 8 escaped in 4 Byr, and in th
sense, the 1 : 2 MMR is stable in smalle. This finding confirms
the results of Duncanet al. (1995).

4. THE 3 : 4 MMR WITH NEPTUNE

4.1. A Portrait of Regular and Chaotic Dynamics

The only known object in the 3 : 4 MMR with Neptune
1995 DA2. We have taken this KBO’s orbital elements from
Asteroid Orbital Elements Database of the Lowell Observato9

They are reasonably well determined for our purposes bec
of a relatively large observational arc for this KBO. 1995 DA2
a counterpart of the asteroid 279 Thule, which is the only st
asteroid discovered until now in the 4 : 3 MMR with Jupiter
the outer asteroid belt. The presence of only one large bod
the 4 : 3 Jupiter MMR is puzzling (the diameter of 279 Th
is 135 km), because if the size distribution were similar to
main asteroid belt, there would exist also many small bodie
the resonance (Nesvorn´y and Ferraz-Mello 1997). On the oth
ce
a = 36.3396 AU, e= 0.074684,i = 6.5585◦, M = 31.836◦, ω = 332.008◦,
andÄ = 127.485◦.
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s:
i = 10 in (a) andi = 30 in (b). The distinctive features are the
chaos ate< 0.05 (LCE>∼10−6 yr−1) and regular-like motion
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The stability test of the 3 : 4 MMR was performed by the sa
means as for the 1 : 2 MMR in Section 3. The initial angles
test particles were chosen so thatσ3:4 = 3λN − 4λ+$ = 180◦,
ω = 90◦, andÄ = ÄN. Two sets of initial conditions have bee
simulated:

(1) 606 test particles with 36≤ a ≤ 37 AU (1a = 0.01 AU),
e= 0.001, 0.05, 0.1, 0.15, 0.2, 0.25 (101 test particles for e
e), andi = 5◦; and

(2) 202 test particles witha = 36.57 AU, 0≤ e≤ 0.3 (1e=
0.003), andi = 10◦ and 30◦. The integration over 108 yr was
performed by the symmetric multistep method. The planet
configuration, parameters of the simulation, and smoothing r
tine were the same as for the experiment in the 1 : 2 MMR.

For set (1) of initial conditions, the estimate of the LCE a
the minimum distance to Neptune are plotted in Fig. 12. T
color coding in Fig. 12 is the same as that used in Fig. 5. Ag
we have compensated the scale on thex axes for short-periodic
variations of the semi-major axis by a shift of 0.1 AU ina, so that
the test particles with the smallestAσ are near the true resonan
center at 36.48 AU.

In Fig. 12, we plot the libration centers and separatrices of
3 : 4 MMR (bold lines). The Kozai resonance is shown by a th
line (Fig. 12a). We have computed its location from ˙$ − Ä̇ = 0,
where the frequencies ˙$ andÄ̇ were determined as function
of e anda by the semi-numerical method of Henrard (1990
The dashed lines in Fig. 12 show the the 2 : 1 and 3 : 1 comm
surabilities between the resonant frequency and the freque
of λU − 2λN. A pair of two-headed vertical arrows indicates th
extrema of the filtereda andeof 1995 DA2 over 107 yr (its incli-
nation varies between 1.5◦ and 8.4◦). 1995 DA2 has a resonan
orbit with Aσ = 76◦, which is stable on 108 yr.

There is a slight asymmetry in the maximum and minimu
values ofa of 1995 DA2 with respect to the resonant cent
which typically happens in the MMRs close to a planet, whe
the real dynamics differs somewhat from the averaged circ
approximation. Nevertheless, the resonant amplitude of 1
DA2 is clearly small and this object is located in the cent
regular region of the resonance.

The maximum LCE in the central region of the 3 : 4 MMR
smaller than∼10−7 yr−1 in the interval of 0.3 AU fore= 0.05
and of 0.2 AU for e= 0.1. The region of small LCE has the size o
0.1 AU fore= 0.15, and ln1(t)/t visibly converges to a nonzer
value (∼10−6.5 yr−1) atAσ = 0 fore≥ 0.2. The size of the centra
region we determine here is smaller than that determined
Malhotra (1996) as an extent of regular resonant orbits i
model with Neptune on a circular orbit (∼0.8 AU for e= 0.1).

The 3 : 1 three-body resonance is at intermediateAσ . The
corresponding region is clearly chaotic with LCE∼10−5.5 yr−1.
Chaos with the similar LCE value was found in the 4 : 1 thre
body resonance inside the 2 : 3 Neptune MMR in N&R00, a
it was shown in that paper that moderate chaos generates a

random walk inAσ , which in turn can lead to late escapes from
the resonance. In this analogy, the orbits in 3 : 1 three-bo
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resonance inside the 3 : 4 Neptune MMR are also potent
unstable. The 3 : 1 resonance should approximately delimi
30◦–40◦ interval in Aσ of marginally unstable region in the 3 :
Neptune MMR.

The minimum distance to Neptune is smaller in the 3 : 4 t
in the 1 : 2 (Fig. 5b) and 2 : 3 MMRs (N&R00, their Fig. 2b
It is typically between 5 and 13 AU for the surviving particle
Most particles that approached Neptune at less than∼4 AU
subsequently escaped from the resonance.

The determination ofδAσ , δe, andδi shows that the mos
stable place in the 3 : 4 MMR is ate= 0.05, whereδAσ = 0.6◦

per 45 Myr for Aσ < 120◦. The expected change ofAσ over
4.5 Byr is 6◦. In order to estimate the fraction of objects surv
ing at t = 4 Byr vs Aσ at this eccentricity, we have performe
the same experiment as in Section 3.3, modeling the ch
diffusion as a random walk.

1000 test particles were simulated for eachAσ , and the simula
tion was repeated for 136 values ofAσ regularly spaced betwee
0◦ and 135◦ for e= 0.05 andi = 5◦. The volumeV(135◦) oc-
cupied by these orbits is 91.4 AU× deg. Assuming the random
walk in Aσ , we advanced the orbits of test particles by apply
random kicks of the size ofδAσ to their resonant amplitudes.
test particle was removed from the simulation ifAσ > 170◦.

Figure 13 shows the initial density of test particles (das
line) and the eroded density profile att = 4 Byr (bold line
denoted by “+0”). Sixty-eight percent of test particles surviv
at t = 4 Byr. Most escapes occurred forAσ > 90◦, and for
Aσ > 135◦ more than 99% of test particles left the resonan
According to Fig. 13, the maximum density of the current
3 : 4 MMR population should be at aboutAσ ∼ 90◦.

The other curves in Fig. 13 show the results of additio
experiments adding toδAσ the evolution ofAσ due to ran-
dom kicks produced by mutual collisions and dynamical sca
ing: δAkick

σ = 1◦ per 45 Myr (63.5% particles survived), 2◦ per
45 Myr (58%), and 3◦ per 45 Myr (53%). The last value show
that δAkick

σ > 3◦ per 45 Myr is needed in order to reduce t
original population to one-half.

The same reasoning as in Section 3.3 allows us to estima
ratios of the current numbers of KBOs in the 3 : 4 MMR to tho
in the 2 : 3 and 1 : 2 MMRs (Eq. (5)). Usinga3:4 = 36.48 AU,
V(135◦) = 91.4 AU× deg, andP3:4

surv= 0.68, the present num
ber of objects in the 3 : 4 MMR (ate= 0.05) should be 77%
of the number of the 2 : 3 resonant objects (ate= 0.2)10 and
2.3 times the number of the 1 : 2 resonant objects (ate= 0.3).
Both of these percentages are in clear contradiction to the
served abundance of the resonant KBOs, implying that the
resonant KBOs must have been efficiently depleted in the e
stages of Solar System evolution.

Figure 14 shows the LCEs for set (2) of initial condition
◦ ◦
dy
10 According to Jewittet al.(1996), the observational selection effect is about

the same for the 2 : 3 and 3 : 4 MMRs.
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enlarges with increasingi , and fori = 30◦ the interval 0.15< e< 0.25 corre-
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FIG. 13. The number of surviving particles att = 4 Byr in the 3 : 4 MMR
(e= 0.05 andi = 5◦) vs initial Aσ . Dashed line shows the initial density dis
tribution. The other lines show the eroded density distributions assuming a
dom walk at 0< t < 4 Byr at a local rate given byδAσ + δAkick

σ . The bold
line denoted “+0 deg” corresponds toδAkick

σ = 0. The thin lines correspond to
values ofδAkick

σ ranging between 1◦ per 45 Myr and 3◦ per 45 Myr (denoted
“+3 deg”).

inside the Kozai resonance (0.18< e< 0.23 for i = 10◦ and
0.15< e< 0.25 for i = 30◦).

The orbits with small and moderate amplitudes in the Ko
resonance are stable even at largei over the age of the Sola
System:δAσ = 0.5◦ per 45 Myr,δe= 0.001 per 45 Myr, and
δi <∼1◦ per 45 Myr. Such orbits represent an exception fr
the general rule found by Duncanet al.(1995) that the low-order
MMRs in the Kuiper Belt are unstable fori > 25◦.

4.2. The Long-Term Integration of the 3:4 Resonant Orbits

We performed a long-term integration of 27 test partic
initially located in the 3 : 4 MMR. The simulation with
swift rmvs3 and a time step of 0.5 yr spanned 4 Byr. W
have included the perturbations of four major planets with
same initial conditions as in Section 3.4. The test particles
tially had a = 36.735 AU, i = 2◦, 0≤ e≤ 0.26 (1e= 0.01),
ω = 90◦,Ä−ÄN = 0, andσ3:4 = 180◦.

For the test particles with 0.02≤ e≤ 0.08, the initialAσ var-
ied between 20◦ and 60◦ (the lower thee, the larger the initial
Aσ ). These particles move in theν18 secular resonance: the ang
Ä−ÄN librates around 0 with an amplitude<60◦. The ampli-
tude reaches a minimum (30◦) for e∼ 0.06, which shall corre-
spond to the center ofν18 for i = 2◦ and Aσ ∼ 0. All particles

in the interval 0.02≤ e≤ 0.08 survive 4 Byr.
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Fore< 0.02,σ3:4 alternates between libration with largeAσ
and circulation. These orbits are usually unstable over 4 B
although they can survive for 2–3 Byr in the resonance be
their eccentricities are driven to Neptune-crossing values.

Fore≥ 0.09 all particles haveAσ < 25◦. These small-Aσ or-
bits are stable over the age of the Solar System, and mos
particles survive the whole simulation without any significa
change in their meanAσ , e, andi . The only exceptions are fou
particles with initiale≥ 0.23, which are ejected from the res
nance att < 2 Byr due to close encounters with Neptune. T
test particles with 0.19≤ e≤ 0.22 are in the Kozai resonanc
The Kozai resonance is narrow for smalli and the test particles
integrated in this region do not show stableω librations, but
rather alternate between the two centers of the Kozai reson
(90◦ and 270◦) on<∼100 Myr. Stable librations in the Koza
resonance happen at largeri .

The results of this simulation are in general agreement w
the resonant portrait presented in the last section. In partic

FIG. 14. The LCE fori = 10◦ (a) and 30◦ (b) in the 3 : 4 Neptune MMR
for Aσ ∼ 0 (set (2) of initial conditions). The largest region with small LC
(<10−7 yr−1) is neare= 0.2, inside the Kozai resonance. The Kozai resona
sponds to practically regular motion.
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they verify the existence and extent of the stable core of
3 : 4 MMR.

5. CONCLUSIONS

We have shown that most chaotic structures in the Kui
Belt are related to the MMRs with Neptune, three-body res
nances with Neptune and Uranus, and MMRs with Uranus
descending order of importance).

The chaotic evolution of orbits at thin resonances is easy to
derstand due to its “one-dimensionality”: numerical experime
show that orbits evolve ine at almost fixed resonanta, while i
changes moderately. The speed of the random walk ine is de-
termined in a complex way by the structure of overlapping re
nant multiplets (Nesvorn´y and Morbidelli 1999) and developing
a satisfactory theoretical model is an issue for future studies

The existence of a resonant-driven random walk inechanges
the common view that the minor body belts are “frozen”
regions sufficiently distant from the main MMRs and secu
resonances, and suggests that the structure of these belts is
dependent, with substantial eccentricity evolution. Apart fro
widely discussed consequences—as the mechanism of supp
transient populations of planets-crossers (ecliptic comets fr
the KB and Earth-crossers from the inner asteroid belt)—
believe that thin MMRs are ideal places for testing today’s mo
els of collisional, scattering, and dissipative evolution in t
belts. Indeed, a large percentage of the current population at
MMRs should have been collisionally injected, and the det
tion of “mini-gaps” (or failure to detect them) at thin MMRs ca
provide constraints on the injection probabilities. Such a stu
is more appropriate for asteroids, whose orbital distribution
better known.

The chaotic evolution in large MMRs is more complex an
is determined by the structure of inner secular, secondary,
three-body resonances. We have investigated the first-order
2 : 3 (in N&R00), and 3 : 4 MMRs with Neptune. This study ha
confirmed the findings of Duncanet al. (1995) and Morbidelli
(1997) that the chaotic evolution in MMRs dominantly affec
Aσ (or equivalently, the amplitude ofa) and that the above reso
nances have stable “cores” for smallAσ , where all orbits survive
4× 109 yr. This stable core is substantially smaller in the 1
than in the other two MMRs. The approximate limits of st
ble motion at smalli are 0.15< e< 0.35 andAσ < 30◦ in the
1 : 2 MMR, 0.05< e< 0.25 andAσ < 100◦ (Aσ < 50◦ for e=
0.3) in the 2 : 3 MMR, and 0.03< e< 0.2 andAσ < 80◦ in the
3 : 4 MMR. The most regular motion for large inclinations o
curs inside the Kozai resonance ate∼ 0.25 in the 2 : 3 MMR, at
e∼ 0.2 in the 3 : 4 MMR, and in the interval 0.2< e< 0.27 in
the 1 : 2 MMR. These orbits are stable over the age of the S
System.

The stable resonant cores are enclosed by the marginally
stable regions where a percentage of objects escape from
nances over the age of the Solar System (Duncanet al. 1995,

Morbidelli 1997). This region is typically 20◦–40◦ wide in Aσ .
In the case of the 2 : 3 resonance, the marginally unstable reg
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is at the place of the 4 : 1 three-body resonance. In addition
thin MMRs outside the 2 : 3 MMR, it is this 4 : 1 three-body reso
nance that generates a significant number of the present Nept
crossers. The marginally unstable region in the 3 : 4 MMR wi
Neptune generated by the 3 : 1 three-body resonance.

The evolution ofe is important in the strongly unstable re
gion at largeAσ . The alternation between resonant libration an
circulation produces a fast random walk ofe. It takes at most sev-
eral 108 yr to drive an orbit from the smalle to Neptune-crossing
orbit by this mechanism.

We have determined the number of currently known KBO
on resonant orbits stable over 4 Byr. There is 1 such body in
3 : 4 MMR (1995 DA2), 15 bodies and Pluto in the 2 : 3 MMR
and probably 2 objects in the 1 : 2 MMR.

The current best-fit orbital elements of 1997 SZ10 and 19
TR66 do not correspond to the stable resonant motion in
1 : 2 Neptune MMR. While for 1997 SZ10 they indicate an un
stable horseshoe orbit, the current orbital elements of 1996 TR
place this object on a nonresonant orbit. Conversely, the orb
angles of these KBOs suggest they are resonant bodies. Ind
the anglesσ1:2 of 1997 SZ10 (−69◦) and 1996 TR66 (−62◦)
are surprisingly close to the center of the asymmetric libratio
for e= 0.37:σ0 ∼ 67◦, which is likely not a mere coincidence
1997 SZ10 and 1996 TR66 are most probably dynamically p
mordial objects in the 1 : 2 MMR that currently librate with sma
Aσ on stable orbits. We believe that future improvement of the
orbital elements will confirm this conjecture. Neverthless, as w
have discussed in Section 2.1, our probabilistic argument in
vor of this hypothesis cannot completely exclude the possibil
that 1997 SZ10 and 1996 TR66 are temporarily captured obje
from the scattered disk.

We have estimated that, if eccentricities have been efficien
uniformized by the primordial excitation at resonances, th
the current number of objects at the most stable places the re
nances (e= 0.3 for 1 : 2,e= 0.2 for 2 : 3, ande= 0.05 for 3 : 4)
shall be roughly in the ratioN1:2 : N2:3 : N3:4 = 2 : 6 : 5,while the
observed apparent ratio is 2 : 16 : 1. Correcting the apparent r
for the observational selection effects (Jewittet al. 1998), the
estimated current population of the 2 : 3 and 1 : 2 MMRs agre
roughly with the above theoretical prediction. Conversely, t
3 : 4 MMR with Neptune must have been significantly deplete
in the early phases of the Solar System evolution.
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Note added in revisions.We recently learned about the recovery of 199
SZ10 (B. Gladman, personal communication), which allowed for better deter
nation of its orbit (B. Marsden, personal communication). While the eccentric
and the angular orbital elements stayed basically unchanged with respect t
ion
previous determination (eccentricity changes by 0.005 and angles by less than
1.5◦), the semi-major axis came down to 48.411 AU. This is exactly what we
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have anticipated in this work. The 0.26-AU change of the semi-major axis p
1997 SZ10 very close to the libration center of the 1 : 2 MMR. We found i
additional simulation that these new orbital elements of 1997 SZ10 corres
to an initially resonant orbit starting withAσ ∼ 30◦ in the tadpole regime. In th
meantime, 1996 TR66 still awaits for a recovery that would improve its or
determination.
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Knežević, Z., A. Milani, P. Farinella, Ch. Froeschl´e, and C. Froeschl´e 1991.
Secular resonances from 2 to 50 AU.Icarus93, 316–330.

Laskar, J. 1994. Large-scale chaos in the Solar System.Astron. Astrophys.287,
L9–L12.

Laskar, J. 1999. Introduction to frequency map analysis. InHamiltonian System
with Three or More Degrees of Freedom(C. Simó, Ed.), pp. 134–150. Kluwe
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