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This chapter summarizes the achievements over the last decade in understanding the effect
of mean-motion resonances on asteroid orbits. The developments from the beginning of the
1990s are many. They range from a complete theoretical description of the secular dynamics
in the mean-motion resonances associated with the Kirkwood gaps to the discovery of the three-
body resonances and slow chaotic phenomena acting throughout the asteroid belt. Consequences
arising from these results have required remodeling the process of asteroid delivery to the Earth-
crossing orbits.

1. INTRODUCTION

It is evident from the plethora of studies of mean-motion
resonances (MMRs) in the last decade that major advances
have been made in this area, and these advances have broad
consequences for our understanding of asteroids. An atten-
tive observer of this branch of dynamical astronomy would
have noted the following progress.

It was shown that bodies in the main MMRs with Jupiter
(3:1, 4:1, 5:2) can reach very high orbital eccentricities
(Ferraz-Mello and Klafke, 1991; Klafke et al., 1992; Saha,
1992). This result suggested that resonant bodies can be
transported to Mars-, Earth-, and Venus-crossing orbits and
then be efficiently extracted from the resonances due to the
larger mass of the two latter planets. The cited works con-
firmed the pioneering findings of Wisdom (1982, 1983, 1985)
on the Kirkwood gap at the 3:1 MMR with Jupiter and
showed that very high eccentricities are frequent outcomes
of the dynamics in MMRs on million-year timescales.

The progress in numerical modeling revealed another
surprising alternative: Resonant asteroids can fall into the
Sun (Farinella et al., 1993, 1994), as a consequence of their
eccentricity approaching unity. The current state of our
understanding of the removal of resonant bodies from the
3:1 MMR is that 65–70% are extracted by Earth and Venus,
and 25–30% go directly into the Sun (Gladman et al., 1997).

The innovative seminumerical treatment of classical
perturbation methods introduced by Henrard (1990) later
allowed a global and realistic description of the secular dy-

namics in the main MMRs with Jupiter, taking into account
the precession of Jupiter’s orbit (Moons and Morbidelli,
1995). This supplied convincing evidence that the orbital
evolution of simulated bodies toward the planet-crossing
orbits is driven by chaotic secular resonances (Morbidelli
and Moons, 1995). A brief account of this new development
is given in section 4.

The 2:1 MMR with Jupiter at 3.27 AU is a unique case,
because here the chaotic secular resonances are located at
high eccentricities (Morbidelli and Moons, 1993). Yet in the
early 1990s, only a few asteroids were known to exist on
resonant orbits, in contrast to the large nonresonant popula-
tions on either side of the 2:1 MMR. The studies devoted
to the question of the long-term stability of the resonant
orbits were marked by the evolution of the numerical meth-
ods (Wisdom and Holman, 1991; Levison and Duncan, 1994)
and the computer speed. Important progress was made when
the globally chaotic nature of orbits in the 2:1 MMR was
demonstrated (Ferraz-Mello, 1994b). Later works (Morbi-
delli, 1996; Nesvorný and Ferraz-Mello, 1997; Ferraz-Mello
et al., 1998a) showed that this resonance is an intermedi-
ate case between the unstable MMRs and stable 3:2 MMR
with Jupiter, the latter hosting the Hilda group. The 2:1
MMR possesses a core with dynamical lifetime comparable
to the age of the solar system, where currently nearly 30
small asteroids are known (the Zhongguo group). We de-
vote section 5 to this subject.

A major breakthrough, already signaled by the studies
of the slow chaos in the 2:1 MMR, was made concerning
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the phenomenon referred to as “stable chaos.” It was pre-
viously noted that a large number of asteroids have strongly
chaotic orbits yet are stable on long intervals of time (Milani
and Nobili, 1992; Milani et al., 1997). The main reason for
such behavior was revealed by the discovery of the so-called
three-body resonances, i.e., MMRs, where the commensu-
rability of orbital periods occurs between an asteroid and
two planets [mainly Jupiter and Saturn; (Murray et al., 1998,
Nesvorný and Morbidelli, 1998)]. The subsequent modeling
of these resonances showed that they represent narrow but
strongly chaotic layers densely intersecting the asteroid belt
(section 6.1).

The slow chaotic evolution observed in numerical simu-
lations in the narrow MMRs in the outer asteroid belt was
explored by Murray and Holman (1997). This study cor-
rectly showed that the mechanism driving the chaotic diffu-
sion lies in the “multiplet structure” of the narrow MMRs
(section 6.2).

The study of the dynamics in the inner belt (2.1–2.5 AU)
revealed surprising instabilities of asteroid orbits. Numerical
simulations showed that many asteroids currently on non-
planet-crossing orbits with large eccentricities evolve to
Mars-crossing orbits within the next 100 m.y. (Migliorini
et al., 1998, Morbidelli and Nesvorný, 1999). The respon-
sible resonances in this case are the MMRs with Mars, pre-
viously thought unimportant because of the small mass of
this planet. The MMRs with Mars were identified as a major
source of the large near-Earth asteroids (NEAs; section 6.3).
They were also conjectured to disperse the asteroid families
in the inner asteroid belt (Nesvorný et al., 2002).

After introducing basic notation (section 2) and showing
the global structure of MMRs in the asteroid belt (section 3),
we follow the above historical overview. Section 2 is di-
rected toward the reader who wishes to gain some basic in-
sight in the mathematical methods developed and utilized in
studies of MMRs. Perspectives are given in the last section.

2. NOTATION AND BASIC TERMINOLOGY

A mean-motion resonance (MMR) occurs when an as-
teroid has an orbital period commensurate with the orbital
period of one or more of the planets. To fix the notation, we
define
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where k, l, m and k = (k1, …, kN), l = (l1, …, lN), m = (m1,
…, mN) are integers with zero sum: k + l + m + ∑(kj + lj +
mj) = 0 (because of the invariance of interaction by rota-
tion, only such combinations exist; this and other condi-
tions on integer coefficients required by symmetries of the
gravitational interaction are known as D’Alembert rules),
and k ≠ 0 and ||k || ≠ 0 (i.e., MMRs are related to the fast
orbital frequencies, unlike the secular resonances). Here λ,

ϖ, Ω, λj, ϖj, Ωj are orbital angles in the usual notation (index
j goes over N planets).

The MMR occurs when σk,k,l,l,m,m = 0, where σk,k,l,l,m,m
is the time derivative of σk,k,l,l,m,m given by equation (1). In
the case of asteroid motion, the secular frequencies ϖ, ϖj,
Ω, Ωj are small compared to the orbital frequencies λ, λj.
For this reason, σk,k,l,l,m,m = 0 is approximately Σkjλj + kλ =
0, which can be solved for the resonant semimajor axis (ares)
in the Keplerian approximation. This means that resonant
conditions σk,k,l,l,m,m = 0 with unique k,k but different
l,l,m,m hold at about the same semimajor axis. Thus, each
(k,k) MMR may be thought to be composed from several
resonant terms with different l,l,m,m (this structure is called
the “resonant multiplet”).

In practice, there are two important cases: (1) the two-
body MMR, when index k has only one nonzero integer kj1
where j1 denotes, in the asteroid belt, either Jupiter or Mars
(a few two-body resonances with Saturn and the Earth occur
but they are of minor importance), and (2) the three-body
MMR, when index k has two nonzero integers, kj1

 and kj2
,

corresponding to two planets (mainly to pairs Jupiter–Saturn
and Mars–Jupiter). Without loss of generality we assume
that kj1

 > 0.
The notation of MMRs that we adopt in the following

text is that a (k,k) two-body MMR with Jupiter (j1 = 5) is
k5J:–k, and with Mars (j1 = 4) is k4M:–k, where k4, k5, and
k are integers defining the resonant angle in equation (1).
In this notation, 2J:1 is a MMR with Jupiter, where an aster-
oid has the orbital period of one-half that of Jupiter. More-
over, if it is clear from the text which planet is considered,
we drop the letter indicating the planet (2J:1 becomes 2:1
as frequently used in the literature). Concerning the three-
body resonances we denote k5J:k6S:k for the MMRs with
Jupiter and Saturn, and k4M:k5J:k for the MMRs with Mars
and Jupiter. (This notation attempts to generalize the clas-
sical notation, i.e., the minus sign in kj1

:–k for two-body
MMRs, to the case of three-body MMRs and MMRs with
planets other than Jupiter.)

The equations of motion of an asteroid in the presence
of a MMR can be conveniently written in the Hamiltonian
formalism. In such formalism, the equations of motion de-
rive from a function of the canonical variables (the Hamil-
tonian). This formulation is useful because it allows us to
use rigorous methods for treating problems where an inte-
grable system is coupled with small perturbations (in the
current context, the asteroid’s motion about the Sun is per-
turbed by the planets).

The classical expression for the Hamiltonian of a small
body evolving under the gravitational force of the Sun and
N planets is

a

r r

r

j j
j

N

j
j

j

j

= −−

= −

=
∑1

2

1

1

3

µ

∆
.

(2)

where ∆j = |r – rj| and r.rj are the heliocentric positions of
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the small body and planet j respectively, and a is the semi-
major axis of the small body. (We adopt units where the
product of the gravitational constant and the mass of the Sun
is 1.) Here, 1/2a is the heliocentric Keplerian part and µj j
is the perturbation exerted by the planet j having mass µj.

Appropriate canonical variables of the Hamiltonian
equation (2) are the so-called modified Delaunay variables

λ Λ = L

p = –ϖ P = L – G (3)

q = –Ω Q = G – H

where L = a , G = L e1 2−  and H = G cos i are the usual
Delaunay variables (e and i are the eccentricity and inclina-
tion of the small body respectively). The perturbation j can
be written as a function of the orbital elements of the small
body and planet j [see Moons (1993) for such an expression
with general validity]. The Hamiltonian equation (2) is then
expressed in terms of variables defined in equation (3).

To realistically account for the motion of the planets, the
time evolution of the planetary orbital elements, provided by
the planetary theory (Laskar, 1988; Bretagnon and Simon,
1990), must be substituted in j. If we denote the planetary
orbital elements by index o (as osculating) to distinguish
them from the proper orbital elements (the latter being de-
noted by aj, ej, ij, λj, ϖj, Ωj), the general form of the quasi-
periodic evolution of the planetary elements is
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where Ψv = Σj(rjλj + sjϖj + tjΩj), the multiindex v denoting
different values of integers rj, sj, tj, and ι = −1.

By definition, the proper angles evolve linearly with time,
with fixed frequencies provided by the planetary theory. We
will denote by nj, gj, sj the orbital, perihelion, and node
frequencies respectively. In fact, because Av, Bv, Cv, Dv in
equation (4) are small, the new j — functions of the plan-
etary proper elements — are at the first approximation iden-
tical to the original functions. There will, however, appear
important terms at second and higher orders in the plan-
etary masses generated by the substitution of equation (4)
in equation (2). A number of approximations of equation (4)
are used in the literature, varying from the planar model
with one planet on the circular orbit [aj

o = aj, λj
o = λj = njt,

ej = ij = 0, where nj = ( )/1 3+ µj ja  and t is time] to more
realistic ones.

To summarize, it is understood at this point that although
we do not explicitly show such an expression, the Hamil-
tonian equation (2) is a function of equation (3) and the
planets’ proper elements (through the substitution in equa-

tion (4)). This is an autonomous Hamiltonian of 3(N + 1)
degrees of freedom with the general form

= + + +0 1
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Here, µ denotes the largest of the masses of the involved
planets, and Λj, Λgj

, Λsj
 are the canonical momenta conju-

gate to the proper angles λj, ϖj, Ωj.
To first order in µ, the elimination of the fast orbital

angles by the Lie-series canonical transformation (see, e.g.,
Hori, 1966) is equivalent to averaging equation (5) over λj,
j = 1, …, N, maintaining only the terms in which λ, λj1

, λj2
appear in resonant combinations σk,k,l,l,m,m [corresponding
to the (k,k) MMR in question]. This procedure is straight-
forward if one utilizes the resonant variables in equation (5)
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where, in the case of a two-body MMR with the j1-th planet,
kj2

 = 0. The Hamiltonian equation (2) written in canonical
variables defined by equation (7) is then simply averaged
over λj, j = 1, …, N. The resulting Hamiltonian of the two-
body MMR is
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and ϖϖϖϖϖ = (ϖ1, …, ϖN), ΩΩΩΩΩ = (Ω1, …, ΩN).
In the case of a three-body MMR, 1 in equation (9) con-

tains only terms dependent on ϖ = –σ – ν and/or Ω = –σz – ν,
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because j depends solely on the variables of the small body
and j-th planet. The resonant terms of three-body MMRs
appear at second- and higher-order terms in µ. These terms
are generated by the substitution of the planetary orbital
elements (equation (4)) (the so-called “indirect” contribu-
tion) and by iterating the Lie-series transformation elimina-
tion of fast orbital angles to higher orders in µ (the so-called
“direct” contribution). This procedure was described in Nes-
vorný and Morbidelli (1999). The resonant Hamiltonian of
the three-body MMR is

k n k n
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Note that equations (8) and (10) have 2N + 3 degrees of
freedom (i.e., N less than equation (5)).

Thus, we learn an important difference between the two-
and three-body MMRs, which is that the magnitudes of the
resonant terms are proportional to the planetary mass and
to the planetary mass squared respectively. As the planetary
masses in our solar system are <10–3 (in solar units), this
shows that a typical two-body MMR is expected to have a
larger effect on an asteroid’s orbit than a typical three-body
MMR would have. To document this fact, let us consider
an Hamiltonian with only one σk,k,l,l,m,m (i.e., fixing k,k,l,l,
m,m, and ignoring terms in equations (8) and (10) with
other than this multiindex). Such a Hamiltonian accounts
for a single isolated multiplet term of the (k,k) MMR. The
phase portrait of trajectories of a single multiplet term is
basically equivalent to the phase portrait of trajectories of
a pendulum. The width in semimajor axis, represented by
the maximal extent of the pendulum separatrixes, is

∆a ares= 8
3

3/2
β

(11)

where β is the coefficient in front of the cosine of the spe-
cific multiplet term in the Fourier expansion of the resonant
parts in equations (8) and (10) (Murray et al., 1998; Nes-
vorný and Morbidelli, 1999). In the case of the two-body
MMR, this coefficient is ∝ µj1

P(e, ej1
, i, ij1), where P is a

polynomial in e, ej1
, i, ij1 with the total power of each term

being at least ρ = |kj1 + k| (called the resonant order). From
equation (11), the width of the two-body resonance is then ∝

µ j resa P
1

3/2 1/2. For the three-body MMR, ρ = |kj1 + kj2 + k|
and its width is ∝ µa Pres

3/2 1/2. Consequently, the two-body
MMR is generally larger than the three-body MMR due to
the mass factor. On the other hand, there are typically more
three-body MMRs than two-body MMRs within a semima-

jor axis interval, because three integers (kj1
, kj2

, k) allow for
a larger number of combinations than two integers (kj1

, k).
In some sense, the larger density of three-body MMRs in
the orbital space compensates for their smaller widths, so
that both two- and three-body MMRs are important for as-
teroid dynamics.

3. OVERLAPPING MEAN-MOTION
RESONANCES AND THE GLOBAL

STRUCTURE OF THE ASTEROID BELT

Let us consider the two-body resonances only. Figure 1
shows the structure of resonant trajectories for the 3J:2
(Figs. 1a,b), 3J:1 (Fig. 1c), 5J:2 (Fig. 1d) and 5M:9
(Figs. 1e,f). The model used for the Jupiter’s MMRs
(Figs. 1a–d) is an approximation of equation (8) assuming
coplanar orbits and a circular orbit for Jupiter. In such case
the first-order resonant Hamiltonian is

k
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It does not depend on Sz, σz because of the coplanarity, and
does not depend on ν because 5 in equation (2) is invariant
by rotation around an axis perpendicular to the orbital plane.
Consequently,

N a e const= − − +





=1 1 2
+k k

k
5

and trajectories can be obtained as level curves of the Ham-
iltonian in equation (12).

In Fig. 1, two N = const manifolds are shown for the 3J:2
(first-order MMR, ares = 3.97 AU) corresponding to eccen-
tricities under (Fig. 1a) and above (Fig. 1b) the Jupiter-
crossing limit. The Jupiter-crossing limit is e = 0.31. Reso-
nant orbits with e > 0.31 may intersect the orbit of Jupiter.
The bold line in Fig. 1b is where collisions take place. There
are two equilibria in Fig. 1a: the stable one at σ = 0 (libra-
tion center) and the unstable one at σ = π. The trajectories
connected to the unstable equilibrium are called separa-
trixes. The trajectories enclosing the stable equilibrium are
the resonant ones. They are characterized by oscillations of
σ about 0 (so-called “libration”). Above the Jupiter-crossing
limit (Fig. 1b), the trajectories near the libration center are
protected from collisions. This happens due to the so-called
“resonant phase-protection mechanism,” which guarantees
that conjunctions with Jupiter occur when the resonant as-
teroid is near the perihelion of its orbit, i.e., far from Jupiter.

The 3J:1 MMR (second order) has two libration centers
at π/2 and 3π/2 (Fig. 1c) and occurs closer to the Sun (ares =
2.5 AU), where collisions with Jupiter cannot happen on
elliptic heliocentric orbits. The 5J:2 MMR (third order) has,
in addition to the libration center at 0, two other centers at
2π/3 and 4π/3 (Fig. 1d). In general, the two-body MMRs
interior of the planet’s orbit (|kj1

| > |k|) have libration cen-
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ters at σc = 2j1π/ρ if ρ is odd and at σc = (2j1 
+ 1)π/ρ if ρ

is even. The exterior resonances have the libration centers
at σc = (2j1 + 1)π/ρ if kj1

 ≠ 1. Conversely, if kj1
 = 1, the struc-

ture of the exterior resonance is characterized by so-called
asymmetric librations where none of the 2ρ libration centers
is at 2j1π/ρ or (2j1 + 1)π/ρ for most values of N (Message,
1958; Beaugé, 1994).

An interesting case is that of the two-body MMRs with
Mars, due to the large modulation of their widths with the
evolution of perihelion longitudes and eccentricities. Fig-
ures 1e and 1f show the trajectories near the 5M:9 MMR
(ares = 2.253 AU) in the coplanar model with Mars on a
fixed elliptic orbit (e4 = 0.065), assuming two values of peri-
helion longitudes: ϖ – ϖ4 = π in Fig. 1e and ϖ – ϖ4 = 0 in
Fig. 1f. In general, when ϖ – ϖj1

 = π, the MMRs have their
maximum widths. For other phases of the secular angles,
the sizes of resonant islands are smaller.

The resonant width (i.e., the width of the libration island)
can be conveniently estimated by measuring the distance
between separatrixes for σ = 0 (for interior resonances of
odd order) or σ = π/ρ (for interior resonances of even order
and exterior resonances with kj ≠ 1). For the exterior reso-

nances with kj = 1, the separatrix distance is measured at
σc, which must be determined beforehand as an extreme
of equation (12). Iterating the algorithm over levels of N =
const, the resonant width ∆a can be determined as a func-
tion of e.

Figure 2 shows the MMRs in the asteroid belt. It is an ex-
tension of a similar result obtained by Dermott and Murray
(1983), but accounting for all MMRs with ∆a > 10–4 AU.
We also plot in this figure the asteroids with magnitudes up
to the current level of completeness (Jedicke and Metcalfe,
1998). The orbital distribution of these bodies is thus un-
affected by observational biases. In the region of the 2J:1,
the resonant orbital elements of all known resonant objects,
regardless of size, are shown.

To correctly interpret this figure, one should be aware
of the now-classical result of Chirikov (1979) known as the
“resonance overlap criterion.” This criterion affirms that
whenever two resonances with similar sizes overlap, the
corresponding resonant orbits become chaotic. The same
criterion was used by Wisdom (1980) to show the onset of
chaos in the vicinity of a planet because of the overlap of
the first-order MMRs with Jupiter. This criterion can be
used in the current context to explain why there are so few
asteroids located above the threshold in e for the resonance
overlap. Moreover, we know from the experience obtained
in the last few years with the secular dynamics inside the
MMRs that MMRs themselves are usually characterized by
chaotic dynamics (see next section). In resonances like the
3J:1 and 5J:2 MMRs (at 2.5 and 2.82 AU), and many oth-
ers, the chaos causes large-scale instabilities: The resonant
bodies evolve to high-e orbits and are removed from reso-
nant orbits by encounters with Mars or Jupiter (Gladman
et al., 1997). Such resonances are associated with the Kirk-
wood gaps in the asteroid distribution. Smaller MMRs, albeit
strongly chaotic, do not generate strong instabilities when-
ever eccentricities are not near a planet-crossing limit. Large
first-order MMRs are characterized by either marginal in-
stabilities (like 2J:1 at 3.27 AU) or possess cores in which
orbital lifetimes exceed the solar system age (such as the
3J:2 MMR at 3.97 AU and the low-e region in the 4J:3
MMR at 4.29 AU, where 279 Thule is located).

The basic impression one has from Fig. 2 is that the
MMRs delimit the orbital space inhabited by the observed
asteroids in a and e. Due to chaos and instabilities generated
by MMRs, this is quite intuitive. Most of the job in remov-
ing the material from the belt was apparently done by sev-
eral large MMRs with Jupiter (as 3J:1, 5J:2, 7J:3, 9J:4, 7J:4,
5J:3, etc.) and many narrow MMRs with Mars. It is not
more than a curiosity that a few MMRs with Saturn and
Earth also exist in the inner and central asteroid belts (6S:1
at 2.89 AU, 7S:1 at 2.61 AU, 2E:7 at 2.305 AU, 2E:9 at
2.73 AU, etc.).

We have accounted solely for two-body MMRs in Fig. 2.
This happens to be a good approximation when consider-
ing the gross structures of the asteroid belt in a and e, but
becomes less acceptable when one’s objective is to under-

Fig. 1. Trajectories at MMRs. (a,b) 3J:2 below (a) and above
(b) the Jupiter-crossing limit; (c) 3J:1 MMR; (d) 5J:2 MMR;
(e,f) 5M:9 MMR with ϖ – ϖ4 = π (e) and ϖ – ϖ4 = 0 (f). On x-
axis, σ is defined by equation (7).
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stand the dynamics of real bodies. The three-body reso-
nances are usually as narrow as two-body resonances with
Mars (<10–2 AU), but generally being of a low order, they
have nonnegligible sizes down to small eccentricities. More-
over, the three-body MMRs are numerous.

4. CHAOTIC SECULAR DYNAMICS IN THE
MEAN-MOTION RESONANCES WITH

JUPITER: THE KIRKWOOD GAPS

The bodies inside the wide MMRs with Jupiter undergo
important secular dynamics, in particular for what concerns
the evolution of e (Wisdom, 1982; Yoshikawa, 1990, 1991;

Ferraz-Mello and Klafke, 1991; Morbidelli and Moons,
1995; Gladman et al., 1997). We briefly review how this
can be theoretically justified, restricting for simplicity to the
case where the asteroid and planets have coplanar orbits,
although elliptic and precessing [see Morbidelli and Moons
(1993) for a discussion of the inclined case]. We start from
the resonant Hamiltonian equation (8), that we rewrite as

2BR = PC +  where PC is given in equation (12), and
 = 2BR – PC. The function  can be considered as a

perturbation of PC, because (for D’Alembert rules) the
former is proportional to the planetary eccentricities.

Because PC is integrable, we introduce the Arnold ac-
tion-angle variables in the MMR region where σ librates.
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Fig. 2. Global structure of the MMRs in the asteroid belt. There are four different gray shades denoting the regions of resonant mo-
tion with planets: light gray for Jupiter MMRs, intermediate for Saturn MMRs, and dark gray for Mars MMRs. Each resonance cor-
responds to one V-shaped region except the large first-order MMRs with Jupiter, which have particular shapes. Some of the resonances
are labeled. For some Jupiter MMRs the projection of separatrixes on the a, e plane is shown by black lines; for 2J:1, 3J:2, and 4J:3,
these lines are bold. We also show the proper (dots; Milani and Knezevic, 1994) or orbital elements (crosses; Bowell et al., 1994) of
asteroids with magnitudes up to the completeness level. In case of the group of small asteroids in the 2J:1 MMR (arrow indicates
3789 Zhongguo), the resonant elements are plotted (asterisks; Roig et al., 2002). Other resonant asteroids are the Hilda group in the
3J:2 MMR and 279 Thule in the 4J:3 MMR. The orbits above the dashed lines are planet-crossing.
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Following Henrard (1990), the transformation has the form

ψ π
σ

σ
= 2

T
t J S dσ π

σ= ∫
1

2
(13)

ψν = ν – f(ψσ, Jσ, Jν) Jν = N

where the integral is done over a trajectory of S, σ for N =
const (Fig. 1), Tσ is a period of the trajectory, and f is a
periodic function of ψσ, with null average.

We then write PC and  as functions of these variables.
By construction, PC now depends only on the new action
variables Jσ, Jν. By averaging  over ψσ, we obtain an
Hamiltonian of the form

g J J J JSEC
j g

PC

j
j

= + +∑ Λ ( , ) ( , , , )σ ν σ ν νψ ϖϖ (14)

where ϖϖϖϖϖ = (ϖ1, ..., ϖN). Because this Hamiltonian is inde-

pendent of ψσ, the action Jσ is now a constant of motion.
Thus, equation (14) describes the secular dynamics inside
the MMR, namely the evolution of the eccentricity (through
Jν) due to the motion of the perihelia of the asteroid and
the planets (–ν and ϖj respectively).

The mean frequency of the longitude of perihelion can
be computed as

− = ∂
∂

ψν
νJ

SEC
(15)

A first-order perihelion secular resonance occurs when ψν +
gj = 0, where gj is the frequency of ϖj [for numeric values
of gj see, e.g., Laskar (1988)].

It often occurs in MMRs with Jupiter that the secular
resonances associated with the g5 and g6 frequencies are
located close to each other. To study the effects of the inter-
action between these two resonances, we construct a two-
resonance model by retaining from equation (14) the har-
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Fig. 3. Sections of the dynamics of equation (16) computed at σ6 = 0 for the 3J:1 MMR. The four panels correspond to increasing
values of Jσ, the latter being related to the amplitude of oscillation of a. The label q stands for ϖ – ϖ5, while N = Jν = a e3 1 2− −( ).
At the center of the 3J:1, the values N = 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 correspond to e = 0.2, 0.55, 0.72, 0.84, 0.92, 0.97 respectively. In
each panel, the lower limit on the N axis is the value that identifies the separatrix of the MMR. Consequently, all the curves that seem
to exit from the bottom border of the panels correspond to trajectories that hit the separatrix of the MMR during their secular evolu-
tion, and are therefore expected to be chaotic. From Moons and Morbidelli (1995).
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monic of  with arguments σ5 = ψν + ϖ5 and/or σ6 = ψν +
ϖ6. Thus, we consider the Hamiltonian

g g

J J J J

g g

PC

5,6
5 6

5,6
5 6

5 6

( , ) ( , , , )

= + +

+

Λ Λ

σ ν σ ν σ σ
(16)

This is a nonintegrable Hamiltonian that must be studied
numerically. The dynamics can be represented on the σ5,
Jν plane, for instance through a section at σ6 = 0. The sec-
tions depend parametrically on Jσ, roughly corresponding
to the libration amplitude of a (Aa).

In the case of the 3:1 MMR with Jupiter (Fig. 3), most
of the phase space is covered by a chaotic region, which
extends up to e = 1 (top borders of the panels). Only the
orbits with small Aa and e (the smooth curves at the bottom
of the two top panels of Fig. 3) still have regular dynam-
ics. These orbits, however, periodically reach Mars-crossing
eccentricities (e > 0.3); the encounters with Mars give im-
pulsive changes to a and e, which, although generally very
small, effectively modify Aa. At large Aa, the chaotic region
generated by the overlap of the ν5 and ν6 resonances ex-
tends to all eccentricities (bottom panels of Fig. 3), and the
asteroid can therefore rapidly and chaotically evolve to very
large e. This combination of large-scale chaos of the secu-
lar dynamics and weak martian encounters explains the be-
havior of 3:1 resonant asteroids observed in numerical inte-
grations of the full equations of motion (see Morbidelli et
al., 2002), and explains the formation of a gap in the aster-
oid distribution.

The same happens in many other major MMRs with
Jupiter that are associated with a Kirkwood gap. Moons and
Morbidelli (1995) have shown that also the 4J:1, 5J:2, and
7J:3 MMRs are dominated by the chaotic region generated
by the overlap of the ν5 and ν6 resonances, so that the aster-
oids in these MMRs can also reach very large e on a time-
scale of a few million years.

Large evolutions of e in many MMRs are typically
caused by the secular resonance ν5 itself. The structure of
the ν5 resonance can be computed in models neglecting g6
(Ferraz-Mello and Klafke, 1991; Klafke et al., 1992; Moons
and Morbidelli, 1995). These models show that by the effect
of ν5, the eccentricity suffers large variations, while ϖ – ϖ5
oscillates around 0 or π. In such models, however, only
bodies with certain initial orbits can evolve from low to very
high eccentricities (Klafke et al., 1992). Other parts of the
orbital space are characterized by regular motion bounded
at moderate e. This regular motion almost completely van-
ishes when g6 is accounted for (as shown above; Fig. 3).
Consequently, in a globally chaotic environment, orbits
evolve according to the underlying structure of ν5, and
despite their initial location in the orbital space, reach very
large e. This is usually accomplished by a series of small
transitions because of the interaction of ν5 and ν6 and a few
large events, when e increases due to the effect of ν5 (Mor-
bidelli and Moons, 1995).

5. TRANSIENT AND STABLE POPULATIONS
OF THE 2J:1 AND 3J:2 MEAN-MOTION

RESONANCES

In the 2J:1 and 3J:2 MMRs, simple models with Jupiter’s
orbit fixed also show a high-e regime of motion associated
with the ν5 resonance. In this case, however, the high-e re-
gime is separated from low e by regular orbits, which are ro-
bust and persist in the models that account for g6 (Henrard
and Lemaître, 1987; Morbidelli and Moons, 1993; Ferraz-
Mello, 1994b; Michtchenko and Ferraz-Mello, 1995; Moons
et al., 1998). Consequently, unlike in the 3J:1, 4J:1, 5J:2,
and 7J:3 MMRs, the secular dynamics do not explain why
the observed orbital distribution of asteroids should display
a gap at the place of the 2J:1 MMR (the Hecuba gap, see
Fig. 2), where only a few tens of small resonant asteroids
reside. Conversely, the 3J:2 MMR hosts some 260 resonant
asteroids known at the time of writing this text (the Hilda
group), with about 30 bodies exceeding 50 km in diameter.

This puzzling difference, known as the “2:1 vs. 3:2 para-
dox,” led some authors to investigate the possibility of
opening the Hecuba gap during the primordial stages of the
solar system formation by invoking effects that can mutu-
ally displace the resonances and amplitudes of asteroids
(Henrard and Lemaître, 1983). It became clear later that
although plausible, such effects are not strictly required to
explain the lack of asteroids in the 2J:1 MMR.

An important difference between the 2J:1 and 3J:2 MMRs
was noted by Ferraz-Mello (1994a,b). He computed the
maximum Lyapounov characteristic exponents (LCE) [the
maximum LCE measures the rate of divergence of nearby
orbits and is an indicator of chaos (Benettin et al., 1976)]
of a number of resonant orbits in both MMRs. It turned out
that in the 2J:1 MMR, LCE ~10–5–10–3.5 yr–1, while in the
3J:2 MMR, LCE <10–5.5 yr–1. This indicated that orbits in
the 2J:1 MMR are chaotic on short timescales (Morbidelli,
1996), at variance with the 3J:2 MMR where most trajec-
tories are only weakly chaotic.

The comparative study (Nesvorný and Ferraz-Mello, 1997)
of the MMRs employing frequency map analysis (Laskar,
1988, 1999) provided additional clues. Plate 1 shows how
the magnitude of the chaotic evolution varies in the orbital
space of the 2J:1 and 3J:2 MMRs. The color coding repre-
sents the value of log10|δϖ|, where δϖ is the relative change
of the perihelion frequency per 0.2 m.y. This quantity is a
powerful indicator of the rate of chaotic evolution (chaotic
diffusion) suffered by orbits in the integration timespan. The
results were extrapolated to larger time intervals assuming
a chaotic random walk of orbits (see Ferraz-Mello et al.,
1998a).

In regions corresponding to the smallest magnitudes of
the chaotic diffusion (deep blue), the orbits evolve relatively
by less than 10% on 1 G.y. Such orbits should be stable over
the age of the solar system. Conversely, in regions where
log10|δϖ| > –2.5 (red, yellow), the perihelion frequency of a
resonant body should typically change by more than 100%
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in less than 1 G.y. Such an evolution should be enough to
destabilize the orbit. Thus, the orbits with log10|δϖ| > –2.5
are expected to be unstable. Despite the large uncertainties
involved in the extrapolation from million-year to billion-
year timescales, Plate 1 provides a convincing argument
suggesting at least 1–2 orders in magnitude shorter lifetimes
in the 2J:1 than in the 3J:2 MMR. The lifetimes in the most
stable regions of the 2J:1 MMR were estimated to be on
the order of 109 yr (Morbidelli, 1996; Nesvorný and Ferraz-
Mello, 1997).

Recently, these results has been put on firmer ground by
direct simulation of 50 test bodies in the 2J:1 MMR over
4 G.y. (Roig et al., 2002). This simulation showed that the
most stable region of the 2J:1 MMR is characterized by
marginal instabilities: There is about a 50% probability that
a body started at 3.2 < a < 3.3 AU, 0.2 < e < 0.4, small i,
and ϖ – ϖJ = σ = 0 escapes from the resonance in 4 G.y.
because of the diffusive chaos. Thus, the lack of a larger
asteroid population in the 2J:1 MMR is at least partially due
to the slow removal of primordial population in the last
4 G.y. The group of resonant asteroids, now accounting for
some 30 small bodies known as the Zhongguo group, is
localized in a very small region in the resonance where life-
times generally exceed 4 G.y.

The origin of the Zhongguo group is unknown. This
group has a steep size distribution, which would be expected
from the collision injection at the breakup of the parent
body of the Themis family (Morbidelli, 1996). The large
ejection velocities needed for such injection, an offset in e
between the Themis family and the Zhongguo group, and
possibly incompatible spectral type of (3789) Zhongguo,
however, suggest this to be an unlikely origin (Roig et al.,
2002). The Zhongguo group seems to be an order of mag-
nitude more depleted than what would be expected from a
dynamically eroded population similar to the Hilda group.
Assuming Zhongguos to be dynamically primordial bodies
in the 2J:1 MMR, their additional depletion could have been
achieved by collision processes or during the primordial
stages of the solar system formation.

The slow diffusive chaos in the 2J:1 MMR is where the
concept of a resonance between an asteroid and two per-
turbing planets first appeared. As originally pointed out
(Ferraz-Mello, 1997; Michtchenko and Ferraz-Mello, 1997;
Ferraz-Mello et al., 1998b) the slow chaos in the 2J:1 MMR
is probably generated by commensurabilities between the
periods of the “Great Inequality,” i.e., the period of 2λ5 –
5λ6 (≈880 yr), and of σ = 2λ5 – λ – ϖ (300–500 yr). Sym-
plectic maps of the 2J:1 MMR found the central region less
chaotic when the effect of the Great Inequality was switched
off. The effect of this resonance was also put into evidence
in direct numerical simulations by artificially changing the
Great Inequality period to 440 yr. In such situation, which
could have occurred when Jupiter and Saturn were slightly
closer to each other during the primordial migration phase
(Fernandez and Ip, 1984), the “beat” between the periods
of the Great Inequality and of σ was approximately 1:1, and

the instabilities in the 2J:1 MMR were significantly accel-
erated (inset in Plate 1). The effect of the Great Inequality
may be analytically modeled as overlap between the 2J:1
and 5S:1 MMRs (Morbidelli, 2002).

6.  NUMEROUS NARROW MEAN-MOTION
RESONANCES DRIVING THE

CHAOTIC DIFFUSION

The narrow MMRs (three-body, high-order two-body,
and resonances with Mars) in the asteroid belt are usually
not powerful enough to destabilize bodies continuously
resupplied into them by the Yarkovsky force (Bottke et al.,
2002b) and collisions (Morbidelli et al., 1995; Zappalà et
al., 2000). Consequently, the narrow MMRs do not open
gaps in the asteroid distribution and are populated by many
asteroids at present. In the following three sections, we dis-
cuss the three-body MMRs (section 6.1), narrow two-body
MMRs (section 6.2), and MMRs with Mars (section 6.3).

6.1. Three-Body Mean-Motion Resonances

The growing evidence that many asteroids move on cha-
otic orbits (Milani and Nobili, 1992; Milani and Knezevic,
1994; Holman and Murray, 1996, Šidlichovský and Nes-
vorný, 1997; Knezevic and Milani, 2000) has challenged the
view of the asteroid belt as an unchanging, fossil remnant
of its primordial state. For example, the asteroid 490 Veritas
at a = 3.174 AU has a Lyapunov time (defined as an inverse
of the LCE) ≈10,000 yr, showing unpredictability of the
orbit over >105-yr intervals. It was moreover noted that e
and i of this object chaotically evolve outside the borders of
the Veritas family (of which 490 Veritas is the largest frag-
ment) in 50 m.y. Based on this fact, the age of the Veritas
family was hypothesized to be of this order (Milani and
Nobili, 1992).

In our current understanding, 490 Veritas is one among
many objects in the asteroid belt residing in the three-body
MMRs. Convincing demonstration of this fact was provided
by estimates of the LCE for large samples of real and ficti-
tious asteroids (Nesvorný and Morbidelli, 1998; Murray et
al., 1998; Morbidelli and Nesvorný, 1999). Figure 4 shows
the profile of the LCE computed for test bodies initially at
e = 0.1 and i = 0. The peaks correspond to chaotic regions.
Some of the main peaks may be identified with two-body
MMRs (3J:1 at 2.5 AU, 5J:2 at 2.82 AU, 7J:3 at 2.96 AU,
etc.), while most of the narrow peaks are related to three-
body MMRs. Moreover, many two-body MMRs with Mars
occur in the inner asteroid belt (2.1–2.5 AU). It has been
shown that a large fraction of real asteroids reside in narrow
resonances (Nesvorný and Morbidelli, 1998). 490 Veritas
evolves in the 5J:–2S:–2, the angle σ5,–2,–2,0,0,–1,0,0,0 having
irregular oscillations about 0 correlated with oscillations of
semimajor axis about ares = 3.174 AU.

This result raised questions concerning the implications
of such a complex chaotic structure of the asteroid belt.
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Asteroids were shown to escape from the main belt to Mars-
and Jupiter-crossing orbits due to a slow chaotic evolution
of eccentricities in narrow resonances. Realistic modeling
including the Yarkovsky effect demonstrated that the narrow
resonances are an important source of the near-Earth-object
population (Migliorini et al., 1998; Morbidelli and Nes-
vorný, 1999; Bottke et al., 2002a). Recently, narrow MMRs
were also hypothesized to disperse the asteroid families in
e and i, possibly creating their often asymmetric shapes
(Nesvorný et al., 2002). If this process is as general as con-

jectured, many asteroid families could have been created
as small groupings and later were dynamically dispersed
by chaotic diffusion in narrow MMRs and by the Yarkovsky
effect. This mechanism may eventually solve the paradox
between hydrocode simulations of breakup events suggest-
ing creation of tightly grouped collision swarms, and the
observed, largely dispersed asteroid families.

Theoretical modeling of the three-body MMRs revealed
several clues to understanding the behavior of asteroids in
numerical simulations. The resonant Hamiltonian of sev-
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eral three-body MMRs with Jupiter and Saturn in the pla-
nar model has been computed by Murray et al. (1998) and
by Nesvorný and Morbidelli (1999). Following the notation
of the latter work, the Hamiltonian of the k5J:k6S:k MMRs
(equation (10)) can be written as a Fourier expansion

a
e e e l l lv res

s s s

v
1

5
1 5 6 5 5 6 6

1
5 6= + − +∑ , ( ) cos[ ( )]α ϖ ϖ σ ν

(17)

a
e e ev res

s s s

v
k k l l l2

5
2 5 6 0 0

1
5 6

5 6
= ∑ , , ,( , ), , ,( ) cos[ ]α σ

where αres = ares/a5, and the multiindex v denotes different
values of integers s5, s6, s, l5, l6, l. The angle σk,k,(l5,l6),l,0,0
in equation (17) is given in terms of σ and ν (equation (7)).
Denoting

β
µ

=

= =

∑5
2

5
2

05 6

a
ev

s

v
l l

, (18)

these coefficients, truncated at two lowest orders in e, are
given in Table 1.

Ignoring all but one resonant multiplet term in equa-
tion (17) (generically denoted by σ*), the complete Hamil-
tonian equation (10) can be reduced to the Hamiltonian of
a simple pendulum  = α(S – N)2 + β cos σ*, N represent-
ing a constant parameter (Nesvorný and Morbidelli, 1999;
Murray et al., 1998). The resonant full width can then be
computed from equation (11). Similarly, the period of small

amplitude librations (in years) is

T
a

k
res= 1

3β
(19)

The position of the libration center σc is determined by the
signs of α and β. As α = –3λ2/2a2

res is always negative, the
resonant center is at 0 when β > 0, and at π when β < 0.
Moreover, according to simple arguments, the Lyapunov
time is on the order of the libration period, so that T pro-
vides a rough estimate of the LCE (Benettin and Gallavotti,
1986; Holman and Murray, 1996).

Table 1 shows ∆a, T, and σc for the most important three-
body MMRs with e = 0.1. The values computed from equa-
tions (11) and (19) are in good agreement with numerical
results (Fig. 4). In particular, 490 Veritas was numerically
found to evolve in the 5J:–2S:–2 MMR with 0.004-AU
oscillations of a and the libration period of several 103 yr,
both values being in agreement with the ones in Table 1.

Understanding the chaos and the long-term evolution of
asteroids in the three-body MMRs requires to account for
more than one multiplet term in equation (17). Murray et
al. (1998) and Nesvorný and Morbidelli (1999) showed that
different multiplets of the three-body MMR generally over-
lap, thus creating a chaotic domain at the position of the
MMR. Quantitative estimates of the LCE and diffusion
timescales in this domain showed that significant chaotic
evolutions of e and i of resonant bodies occur on long time-
spans (Murray and Holman, 1997; Murray et al., 1998).
Conversely, the semimajor axis of resonant bodies remains

TABLE 1. Analytic results on the three-body MMRs (from Nesvorný and Morbidelli, 1999).

Resonant Libration Period Libration
Resonance Semimajor Axis Coefficient Resonance Width T (103 yr) Center

Designation ares (AU) β (× 10–8) (e = 0.1) (e = 0.1)  σc

4J:–1S:–1 2.2155 6.05e2 – 2.22e4 0.37 52 0
3J: 1S:–1 2.2994 3.78e3 – 1.94e5 0.1 217 0
4J:–2S:–1 2.3978 19.7e – 3.95e3 2.4 9.9 0
7J:–2S:–2 2.4479 46.0e3 – 53.0e5 0.37 33 0
7J:–3S:–2 2.5600 –4.35e2 + 5.28e4 0.39 36 π
2J: 2S:–1 2.6155 6.03e3 + 3.63e5 0.15 200 0
6J:–1S:–2 2.6192 –17.6e3 + 21.3e5 0.25 57 π
4J:–3S:–1 2.6229 –0.206 – 0.763e2 0.9 30 π
7J:–4S:–2 2.6858 0.255e – 0.356e3 0.3 49 0
3J:–1S:–1 2.7527 –7.99e + 0.360e3 1.9 17.8 π
4J:–4S:–1 2.9092 0.0203e + 0.0691e3 0.1 370 0
5J:–1S:–2 2.9864 20.9e2 – 21.3e4 1.1 19 0
8J:–3S:–3 3.0166 –10.0e2 + 24.0e4 0.8 19 π
3J:–2S:–1 3.0794 –3.06 – 15.5e2 4.5 9.9 π
6J: 1S:–3 3.1389 –22.4e4 + 143e6 0.12 132 π
8J:–4S:–3 3.1421 0.357e – 0.99e3 0.5 33 0
3J: 3S:–2 3.1705 –25.8e4 + 5.15e6 0.13 180 π
5J:–2S:–2 3.1751 45.6e – 32.3e3 5.6 4.3 0
7J:–2S:–3 3.2100 –115e2 + 273e4 2.8 5.8 π
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locked in the interval spanned by the resonant multiplet and
although behaving stochastically on short timespans, never
directly evolves outside the resonant borders, unless two or
more different MMRs overlap (the case of high e in Fig. 2).

6.2. Narrow Two-Body Mean-Motion
Resonances with Jupiter

As discussed above, the details of the multiplet struc-
ture of each two-body and three-body resonance affect the
extent of the chaotic zone associated with the resonance,
the typical Lyapunov time for a small body in that reso-
nance, and the timescale on which such a body might cha-
otically diffuse in the space of orbital elements. Useful
analytic models of these effects can be obtained using some
simplifying assumptions (Holman and Murray, 1996;
Murray and Holman, 1997; Murray et al., 1998). We show
an example of such modeling for a two-body resonance (see
also Morbidelli, 2002). This modeling can be used with
small modifications for the three-body (Nesvorný and Mor-
bidelli, 1999) and Mars’ MMRs.

To most simply account for the multiplet structure of a
two-body (k,k) MMR, we restrict ourselves to the planar
elliptic three-body model. The resonant Hamiltonian of such
model can be written

k

k
n c P c P

k k sp k

j
j s

s

k k

j j

j

= − + + ×+

+ + −

=

+

∑1

2 2 0
0

1

1

1

1 1

Λ
Λ Λ Λ( , ) ( , )

cos λ λ jj jk s
1 1

+ − ϖ( )
(20)

where c0 is a part of µ 1 in equation (8) independent of
angles. In equation (20), we retained only those terms of
the Fourier expansion of equation (8) that are lowest order
in the eccentricities of the planet and the small body. For
simplicity, we arbitrarily set ϖj1

 = 0, and drop it from equa-
tion (20).

The canonical variables we use in the following slightly
differ from equation (7). We define them by

ψ = kj1
λj1

 + kλ Ψ = −1
0k

( )Λ Λ

φ = p I = P (21)

λj1 Λ Λ Λj j
jk

k1 1

1= −

where Λ0 = ares  is the unperturbed MMR location. Keeping
the lowest-order terms in Ψ and I in the Taylor expansion
of first three terms of Hamiltonian equation (20), we get

AI c I ss
s

k kj

= + + +
=

+

∑1

2
22

0

1

βΨ ε ψ φ( ) cos( ) (22)

where β and 2εA = ∂c0/∂I(Λ0,0) are the constants associ-
ated with the Taylor expansion, and cs(I) = cs(Λ0,I).

To apply the resonance overlap criterion to the Hamil-
tonian equation (22) we must compute the separation and

widths of the individual multiplet terms in the resonance.
The separation in Ψ between two such terms is given by
βδΨ = 2εA, while the width of each multiplet is ∆Ψ =
2

1
c I Ps j( , )/β. The stochasticity parameter (Chirikov, 1979;

Lichtenberg and Lieberman, 1983) is then

K
c
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s= =π Ψ

δΨ β
πβ
ε

∆
Α

2 2
0 (23)

where cs0
 is the coefficient of a representative multiplet term

(Murray and Holman, 1997). The orbits in the MMR will
be chaotic if Keff > Kcrit, where Kcrit ~1. The extent of the
chaotic zone in Ψ (and therefore in semimajor axis) is
roughly given by the Ψ range of those multiplet terms that
overlap. The Lyapunov time in the chaotic zone is given by

T
K K K

L
eff eff eff≈ + + +π

ε
π

εΑ Α
/ ln ~1

4 2 4

2

(24)

which indicates that the Lyapunov time is comparable to
the precession period.

If Keff > Kcrit, the diffusion in Ψ and I, can be described
by the Fokker-Planck equation (Lichtenberg and Lieberman,
1983; Murray and Holman, 1997). The associated diffusion
coefficients are
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In the model of Murray and Holman (1997) the resonant
bodies execute random walks in Ψ (or semimajor axis) and
I (or eccentricity). These random walk are subject to bound-
ary conditions. The permissible values of Ψ lie within the
range of values for which the resonant multiplet terms over-
lap (the chaotic zone). The values of I range from I = 0
(circular orbit) to I = Imax, where Imax corresponds to planet
crossing. The bounding values of Ψ and I = 0 can be mod-
eled as reflecting barriers, and the value of I = Imax as an
absorbing barrier. For a resonant asteroid at I0, the solution
of the Fokker-Planck equation yields typical values of the
removal time, TR, of

T
I I

D I D I
R ~

( ) ( )
max

max

0

I I 0
(27)

Figure 5 shows removal times for outer-belt asteroids in
a number of two-body MMRs. The solid symbols are the
results of numerical integrations; the open symbols are
analytic predictions from equation (27). The values of I0
were determined from short numerical integrations of reso-
nant asteroids, hence the scatter in the predicted removal
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times. In most cases the results of numerical experiments
agree with the analytic predictions to an order of magni-
tude. The results of these calculations indicate that for high-
order MMRs in the outer belt, removal times are in some
MMRs substantially shorter than the age of the solar system
(the case of the 7J:4, 5J:3, and 8J:5 MMRs) and in other
resonances substantially longer than the age of the solar
system (the 13J:7 and 11J:6 MMRs).

Figure 5 shows that resonances like the 7J:4, 5J:3, and
8J:5 MMR are expected to correspond to gaps in the aster-
oid distribution. Indeed, no large outer-belt asteroids are
observed in them (Fig. 2). The outer asteroid belt, however,
seems more depleted than what would be expected from
the effect of chaotic resonances. This led some authors to
suggest that depletion occurred during the primordial ra-
dial migration of the planets (Holman and Murray, 1996;
Liou and Malhotra, 1997). The same scenario can also
nicely explain the presence of many asteroids in the 3J:2
MMR, which could have been captured by the resonance
accompanying the inward migration of the Jupiter. Alter-
natively, the outer asteroid belt could have been depleted
by the effect of large Jupiter-scattered planetesimals (Petit
et al., 1999).

6.3. Mean-Motion Resonances with Mars

It may seem surprising at a first glance that the MMRs
with Mars are important in the asteroid belt because Mars

is a factor of ≈3000 less massive than Jupiter. Thus, accord-
ing to the discussion in section 2, the two-body MMRs with
Mars should be in general a factor 3000 ~55 smaller than
the two-body MMRs with Jupiter. In the inner asteroid belt,
however, this factor may be compensated for by the small
distance between an asteroid and Mars. Indeed, the width
of any MMRs near the planet-crossing limit becomes large.
According to Fig. 2 (see also Fig. 4), the MMRs with Mars
provide a dominant source of chaos in the inner asteroid belt,
overwhelming in size and number the MMRs with Jupiter.

The dynamical interaction of asteroids with the MMRs
with Mars is complex. As an example, Fig. 5 shows the evo-
lution of a, σ = 9λ4 – 22λ + 13ϖ, and e13/2 of 41 Daphne. This
asteroid is temporally captured in the 3M:11 MMR when e
becomes large during the secular oscillations. The irregular
behavior of a and σ witnesses the chaoticity of the orbit,
which has a Lyapunov time of <104 yr (Šidlichovský, 1999).

Very little analytical work has been done on the subject
of the MMRs with Mars. Figures 1e–f are apparently highly
idealized approximations of the real dynamics (Fig. 6). To
understand the real dynamics, it is important to account for
the rich multiplet structure of the MMRs with Mars and the
significant time-modulation of each multiplet’s width with
varying eccentricities (interesting MMRs with Mars are
usually of a very high order).

The chaotic diffusion in the MMRs with Mars provide
transfer routes from the asteroid belt to Mars-crossing or-
bits. This source was hypothesized to be one of the major
sources of large NEAs (Migliorini et al., 1998; Morbidelli
and Nesvorný, 1999; Bottke et al., 2002a). The detailed
mechanism of this transfer involves the complex interac-
tion of the Yarkovsky effect and MMRs. In particular, the
Yarkovsky effect is thought to be responsible for refilling
MMRs by new objects; otherwise the space occupied by
the active MMRs would be cleared of the asteroids, and
gaps in the asteroid distribution at resonant semimajor axes
would be created. Such gaps are not currently observed.

7. PERSPECTIVES

In the last decade, we witnessed fascinating progress
from studies of separate MMRs in simplest physical mod-
els to the global understanding of the structure and effects
of MMRs throughout the asteroid belt. Nevertheless, we feel
that many open problems await solution. The least devel-
oped is the modeling of narrow resonances, especially the
three-body MMRs and the MMRs with Mars. The intricate
interaction of MMRs and the Yarkovsky effect is an inter-
esting subject for future studies.

Basically, one would like to know how the probability
of capture of a drifting body into narrow MMRs depends on
the magnitude and direction of the semimajor axis drift, and
whether the phase of secular angles plays any role in the
capture process. Ideally, when capture occurs, one would
also like to statistically estimate the change of e and i of an
asteroid during the time spent on a resonant orbit. Although
some hints about these processes may be derived from re-

3.5
1000

104

105

106

107

108

109

1010

1011

1012

13:7

11:6

9:5

7:4

5:3

8:5

11:7

13:812:7

0.680.66 0.7 0.72 0.74

3.6 3.7

a (AU)

a (Jupiter Units)

T
R
 (

yr
)

3.8 3.9

Fig. 5. The removal times for outer-belt asteroids in a number
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obtained from numerical integration of bodies in MMRs charac-
terized by extremely slow chaotic diffusion. Here, Jupiter units
are 5.2 AU. From Murray and Holman (1997).
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cent numerical simulations, the general trends in the param-
eter space are unknown. Yet the interaction of narrow MMRs
with the Yarkovsky effect is important for such issues as
the origin of NEAs and the dynamical dispersion of the
asteroid families. Also remaining are a few puzzles concern-
ing the asteroid population of large MMRs in the asteroid
belt, possibly related to the processes involved in the early
stages of the solar system formation.

We note that a large number of asteroids exist in the 3J:2
MMR, while both the 2J:1 and 4J:3 MMRs are substantially
depleted. Although some depletion of latter resonances can
be explained by the chaotic processes acting in the last
4 b.y., additional depopulation likely occurred during the
formation of the asteroid belt. Is the resonant structure of
the outer asteroid belt a natural outcome of the accretion
itself (Petit et al., 1999), or possibly a sign of the primor-
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Fig. 6. The evolution of orbital elements of the asteroid 41 Daphne. The panels show (a) the semimajor axis, (b) σ = 9λ4 – 22λ +
13ϖ, and (c) e13/2. The evolution of 41 Daphne is characterized by the interaction with the 9M:22 MMR. The width of a MMR is
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dial planetary migration? We wonder if a unique answer to
this question can be given. Apparently, detailed modeling
of the primordial phases is required.

Such quantitative modeling should also show whether
the current depletion of the outer belt between the 2J:1 and
3J:2 MMRs (3.4–3.9 AU) requires primordial migration
(Holman and Murray, 1996; Liou and Malhotra, 1997).
Moreover, what effect would planetary migration have in
the primordial main asteroid belt? First attempts to quan-
tify this effect by direct simulations (Gomes, 1997; Levison
et al., 2001) show that the sweeping ν6 secular resonance
is efficient at deleting the asteroid population. Our hope is
that the increasingly detailed information about the current
asteroid belt provided by observations, combined with fu-
ture progress in theoretical modeling, will further reveal
signatures that primordial processes imprinted on the or-
bital structure of the belt, and that have been preserved until
now. Understanding the effects of MMRs will certainly be
part of that story.
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