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ABSTRACT

Among the many new irregular satellites that have been discovered in the last 5 years, five or more are in the
so-called Kozai resonance. Because of solar perturbations, the argument of pericenter ! of a satellite usually
precesses from 0� to 360�. However, at inclinations higher than ’39N3 and lower than ’140N7, a new kind of
behavior occurs for which the argument of pericenter oscillates around �90

�
. In this work we concentrate on the

orbital history of the Saturnian satellite S/2000 S5 Kiviuq, one of the satellites currently known to be in such
resonance. Kiviuq’s orbit is very close to the separatrix of the Kozai resonance. Because of perturbations from
the other Jovian planets, it is expected that orbits near the Kozai separatrix may show significant chaotic
behavior. This is important because chaotic diffusion may transfer orbits from libration to circulation, and vice
versa. To identify chaotic orbits, we used two well-known methods: the frequency analysis method of Laskar
and the maximum Lyapunov exponents method of Benettin and coworkers. Our results show that the Kozai
resonance is crossed by a web of secondary resonances, whose arguments involve combinations of the argument
of pericenter, the argument of the Great Inequality (GI) (2kJ � 5kS), the longitude of the node �, and other terms
related to the secular frequencies g5, g6, and s6. Many test orbits whose precession period are close to the period
of the GI (883 yr), or some of its harmonics, are trapped by these secondary resonances and show significant
chaotic behavior. Because the GI’s period is connected to the semimajor axes of Jupiter and Saturn and because
the positions of the Jovian planets have likely changed since their formation, the phase-space location of these
secondary resonances should have been different in the past. By simulating the effect of planetary migration, we
show that a mechanism of sweeping secondary resonances, similar to the one studied by Ferraz-Mello and
coworkers. for the asteroids in the 2:1 mean motion resonance with Jupiter, could significantly deplete a pri-
mordial population of Kozai resonators and push several circulators near the Kozai separatrix. This mechanism
is not limited to Kiviuq’s region and could have worked to destabilize any initial population of satellites in the
Kozai resonance around Saturn and Jupiter.
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1. INTRODUCTION

Carruba et al. (2002) studied an analytical model of the Kozai
resonance (Kozai 1962) based on a secular development of the
disturbing function, expanded in series of a/a 0 (where the prime
stands hereafter for quantities related to the perturber), trun-
cated at second order in a/a 0, and averaged over the mean
anomalies of both perturber and perturbee. (See also Innanen
et al. 1997.) Two kinds of behavior are possible in this sim-
plified model: for inclinations of less than 39N23 (or higher than
140N77 for retrograde satellites), the argument of pericenter
freely circulates from 0� to 360�, while at intermediate incli-
nations a new class of solutions, in which the argument of
pericenter librates around �90

�
, is possible. Such behavior is

called the Kozai resonance. The value of the critical inclina-
tion of 39N23 is, in fact, an artifact of the averaging; the real
boundary between the region in which libration is possible or

not is actually a more complicated function of the satellite’s
semimajor axis and eccentricity (Ćuk et al. 2003; Ćuk & Burns
2004). Currently, seven irregular satellites of Jovian planets
seem numerically to be in the Kozai secular resonance: two
around Saturn (S/2000 S5 Kiviuq and S/2000 S6 Ijiraq), two
around Jupiter (S/2001 J10 Euporie and S/2003 J20), one around
Uranus (S/2003 U3), and two around Neptune (S/2002 N2 and
S/2002 N4; Holman et al. 2004). Two additional satellites,
S/2003 N1 (Holman et al. 2004) and S/2003 J18, are currently
on chaotic orbits that may also be in the Kozai resonance. We
caution the reader that the orbital elements of S/2003 J18,
S/2003 N1, S/2003 J20, and S/2003 U3 are not final, so it is
possible that once more observations of those satellites will be
available, they will no longer be inside the resonance.

A question that Carruba et al. (2002) left unanswered re-
garded the possible presence of chaos and chaotic diffusion at
the separatrix between the regions of circulation and libration.
Since in that work the authors considered a three-body problem,
but averaged over the mean anomalies of both perturber and
perturbee, our analytical model was an integrable model with

1 Current address: Instituto de Astronomia, Geofı́sica e Ciências Atmosféricas,
Universidade de São Paulo, 05508-900 São Paulo, SP, Brazil.

1899

The Astronomical Journal, 128:1899–1915, 2004 October

# 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A.



1 degree of freedom. In the real system, however, perturbations
from other Jovian planets and short-period terms may produce
chaos near the Kozai separatrix. Chaotic evolutionmight lead to
the escape of objects whose orbits were originally inside the
Kozai resonance. Here we test the hypothesis that the chaotic
layer is due to the fact that the Kozai resonance overlaps with
secondary resonances near the separatrix. (By secondary reso-
nance, we mean an equality between the frequency associated
with the main resonance, in our case the precession or libration
frequency of !, and other frequencies, e.g., one connected with
the period of the Great Inequality [GI]. Such resonances of
course have to satisfy the d’Alembert rules.) It is well known
that resonance overlap is one of the major sources of chaos in
dynamical systems (Chirikov 1979). Moreover, the positions
of the planets may have changed after their formation, because
of gravitational scattering of planetesimals (Malhotra 1995).
As a consequence of the different planetary positions, the shape
of the chaotic layer and the locations of the secondary reso-
nances inside and outside the Kozai resonance should have
been different in the past. This may have had consequences on
the stability of any primordial population of Kozai resonators.

This paper concentrates on identifying the chaotic layer at
the transition between circulation and libration for Kozai reso-
nators, in particular for the Saturnian satellite Kiviuq, whose
orbit is very close to the separatrix of the Kozai resonance. Our
goal is to understand the origins of chaos and the effects of
planetary migration.

Our paper is organized as follows. Section 2 describes the
major features of our simplified model of the Kozai resonance
and identifies the transition region between circulation and
libration. Section 3 recalls two methods to identify chaotic
behavior in dynamical systems, the frequency analysis method
(FAM) and maximum Lyapunov exponents (LPEs). Section 4
investigates possible causes of the chaotic layer. Section 5
shows how the Kozai resonance is crossed by a series of sec-
ondary resonances of different strengths. In x 6, we demonstrate
how the effect of planetary migration, combined with the effect
of the secondary resonances, might have operated to depopu-
late a possible primordial satellite group of Kozai resonators.

2. IDENTIFYING THE TRANSITION BETWEEN
CIRCULATION AND LIBRATION: ANALYTICAL

AND NUMERICAL TOOLS

Carruba et al. (2002) described a simple analytical model of
the Kozai resonance. This model is based on a development
of the disturbing function in a series in r/r 0, where r and r 0 are
the radial planetocentric distances of the satellite and the Sun,
truncated at second order. The perturbing function R is

R ¼ G0m
0

r 0
P2(s)

�
r

r 0

�2

; ð1Þ

where G0 is the gravitational constant, m 0 is the solar mass, s
is the angle between directions to the satellite and the Sun as
seen from the planet, and P2 is the second-order Legendre
polynomial. The perturbing function, when averaged over the
mean anomalies of both the Sun and satellite, becomes

R¼ G0m
0a2

8b03

; ½2þ 3e2 � (3þ 12e2 � 15e2 cos2!) sin2I �; ð2Þ

where a, e, and I are the semimajor axis, eccentricity, and
inclination of the satellite, respectively. The quantity b0 ¼

a0(1� e02)1=2 is the Sun’s semiminor axis. The perturbing func-
tion, when expressed in terms of Delaunay elements (l, g, h,
L, G, H; see Murray & Dermott 1999; Danby 1988), is

R ¼ � m0L4

8b03G0m0

�
� 10þ 3

L2
(3G2 � 4H2)þ 15H2

G2

þ 15 cos2g

�
1� G2

L2
� H2

G2
þ H2

L2

��
: ð3Þ

Since both l and h are cyclic, the conjugate quantities L and
H are constants of the motion, as is the quantity

� ¼ (1� e2) cos2I ¼ H2=L2: ð4Þ

With L and H fixed, the perturbing function (eq. [3]) rep-
resents a 1 degree of freedom model for the Kozai resonance
(Innanen et al. 1997). The following equations for the orbital
elements hold:

dI

d�
¼ � 15

16
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p (e2 sin 2! sin 2I ); ð5Þ

de

d�
¼ 15

8
e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
sin 2! sin2I ; ð6Þ

d!

d�
¼ 3

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p ½2(1� e2)þ 5 sin2!(e2 � sin2I)�; ð7Þ

where � ¼ G0m
0t=nb03 and t is time. The time has been rescaled

in this way to eliminate the equations’ dependency on the sat-
ellite’s semimajor axis. Kinoshita & Nakai (1999) found the
solution of equations (5)–(7) in terms of elliptic functions.
Figure 1 shows the results of numerical integrations of equa-
tions (5)–(7) for � ¼ 0:70 and 0.25. For � < 0:6, librating
solutions are possible.
This model has several limitations. First, short-period terms

have been eliminated by averaging. One consequence of this
averaging is that the limit between the zones in which libration
is possible or not is I ¼ 39N23 (or 140N77 for retrograde orbits),
regardless of the satellite’s semimajor axis (both inclinations
correspond to� ¼ 0:6 for e ¼ 0). When short-period terms are
included, the boundary shifts slightly (Ćuk & Burns 2004). A
case where this is observed is the orbit of the Jovian satellite
Euporie, which is a Kozai resonator but has� > 0:6. A second
limitation of the averaged model is that, since it is an integra-
ble, 1 degree of freedom model, no chaos can appear at the sepa-
ratrix between circulation and libration. Finally, since mutual
perturbations among Jovian planets are ignored, the orbital
elements of the planet aboutwhich the satellites circle are constant.
In the real solar system, the eccentricities of Jupiter and Saturn
vary with several prominent periods associated with the secular
frequencies g5 and g6 (timescales of up to 1=g5 ’ 300; 000 yr),
GI terms 2kJ � 5kS, where the suffixes ‘‘J’’ and ‘‘S’’ hereafter
stand for Jupiter and Saturn (with a timescale of 883 yr), and
short-period frequencies, connected with the orbital periods
of the planets (11.9 and 29.7 yr for Jupiter and Saturn, re-
spectively). The shape of the separatrix may change in time
according to the variations of the planet’s eccentricity and
semimajor axis (remember the presence of the factor b

03 in �),
which might introduce chaos along the real system’s separatrix.
To understand the behavior of the real system, we concen-

trate on the case of Kiviuq, a Saturnian satellite in the Kozai
resonance whose orbit is very close to the separatrix between
libration and circulation in !. We start by numerically searching
for the transition between circulation and libration. To do so,
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we used the following procedure: We numerically integrated
Kiviuq’s orbit over 100,000 yr and found the maximum ec-
centricity (e ¼ 0:41714), because then the satellite is closest
to the separatrix. We computed � according to the inclination
of Kiviuq at that time (I ¼ 42N68, � ¼ 0:4464) and generated
a grid of initial conditions for test particles; this contains
19 values in !, from 40

�
to 140

�
, separated by 5

�
. All particles

were given the average value of Kiviuq’s semimajor axis during
the integration (a ¼ 0:0755 AU) and a grid in inclination with
21 values, starting at 36N8 with a step of 0N6. The values of
the eccentricities were computed from � ¼ 0:4464. The initial
� and M (mean anomaly) are equal to those of Kiviuq at its
maximum eccentricity (� ¼ 22N8, M ¼ 351N022). This grid
forms our ‘‘low-resolution survey.’’ Further information on
our low-resolution survey can be found in Table 1.

These initial orbits were integrated for 2 Myr under the
influence of the four Jovian planets (outer solar system, here-
after OSS) with a modified version of SWIFT-WHM, the in-
tegrator that uses the Wisdom & Holman (1991) mapping in
the SWIFT package (Levison & Duncan 1994). We modified
the integrator so that the planets’ orbits are integrated in the
heliocentric system and the particles’ orbits are integrated in
the planetocentric reference frame. This setup minimizes the
integration error (Nesvorný et al. 2003).

To more easily identify secular oscillations in Saturn’s in-
clination, we refer all the positions to Saturn’s initial orbital

plane. Figure 2 shows the results of our simulations for our
low-resolution survey. The actual separation between circu-
lating and librating behavior does not follow the solution of
the secular model when the full perturbations from Jovian
planets are considered. Moreover, some orbits alternate be-
tween circulation and libration (and, in a few cases, spend
some time in the other libration island around ! ¼ 270

�
).

The questions that remains to be answered are whether there
is a chaotic layer near the separatrix and if chaotic diffusion
might be effective in depleting a primordial population of
Kozai resonators. To address this question, and identify chaos,
we use FAM (Laskar 1990) and compute the MLEs (Benettin
et al. 1980), which we now describe.

3. NUMERICAL TOOLS TO STUDY CHAOTIC ORBITS

FAM is essentially an analysis of the frequency power spec-
trum of appropriate combinations of numerically determined

Fig. 1.—Energy levels of the Kozai Hamiltonian for � ¼ 0:70 (left) and 0.25 (right), in the ! vs. 1� e2 plane. Since the levels are symmetric about ! ¼ 180�, we
only show the interval 0–180�. For � < 0:6, librating solutions are possible (right).

TABLE 1

Orbital Parameters of Our Low-Resolution Survey

Parameter Value

a (AU)...................................................... 0.0755

Imax (deg).................................................. 47.6

Imin (deg) .................................................. 36.8

!max (deg) ................................................ 140.0

!min (deg) ................................................. 40.0

Note.—The eccentricity of the test particles was found
using the relationship � ¼ (1� e2) cos2I with � ¼
0:4464. The step in I was 0N6, and the step in ! was 5�,
with 21 values of I and 19 of !, respectively. The other
angles � and M were those of Kiviuq at the maximum of
the eccentricity during a 100,000 yr integration (� ¼ 22N8
and M ¼ 351N022).

Fig. 2.—Fate of orbits located near the separatrix between circulation and
libration for our low-resolution survey. Librating particles are shown by large
dots, circulating orbits are shown by small dots, and asterisks denote orbits
that switched from libration to circulation. The black line identifies the sepa-
ratrix according to the secular model for S/2000 S5 Kiviuq’s � at the maxi-
mum eccentricity. Kiviuq’s position is indicated by a cross (near S5).
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orbital elements. In our case, for example, we are interested in
the frequency related to the precession or libration2 of the ar-
gument of the pericenter !. Figure 3 shows the periods in !
for the particles in our low-resolution survey. The periods peak
sharply in the transition region from circulation to libration in
!, reaching a maximum of 1800 yr. The minimum libration
period is 480 yr. The average period of libration in the Kozai
resonance in our survey is 640 yr. This range in periods corre-
sponds to a frequency range of ’70000–320000 yr�1.

We took the Fourier transform of e exp i! ¼ e cos ! þ
ie sin ! (where i ¼

ffiffiffiffiffiffiffi
�1

p
) over two time intervals (0–1 Myr

and 1–2 Myr) and computed the quantity

� ¼ log j1� f 2=f 1j; ð8Þ

where f 1 is the frequency over the first interval and f 2 is the
corresponding frequency on the second interval. If the motion
is regular, f (t) will be nearly constant, with small variations
produced by errors in the determination of the frequencies
(discussed later in this section). If the motion is chaotic, var-
iations in � will be related to changes in !’s precession period.
High values of � (’10�3) are connected to more chaotic orbits,
while low values (’10�5) indicate more regular behavior.

While this is the main idea behind FAM, a few complications
occur. First, the precision of a fast Fourier transform (FFT) is
limited by its coarse resolution [�f ¼ 1=(N ��), where ��
is the (constant) time separation of !-sampling and N is the
number of data points used, which must be a power of 2; Press
et al. 1996] in recovering the frequencies having the largest
amplitude. To overcome this problem, we used the frequency-
modified Fourier transform method (FMFT), with quadratic
corrections (Šidlichovsky & Nesvorný 1997), which allows us
to retrieve the frequencies with the largest amplitude to a better
precision. To estimate the error associated with this method, we
computed the frequencies with and without quadratic correc-
tions and computed the average value of the differences in �.

This procedure gives an upper limit on the error. In our case,
the average error of FMFT was � ¼ �4:5, while a simple
FFT had a resolution of � ¼ �3. (We used a time step �� ¼
30 yr and 32,768 data points, so that each interval for the
determination of the frequencies was ’1 Myr.)
Another problem to take into account is aliasing. The FFT

can recover frequencies up to the Nyquist frequency [ fN ¼
1=(2��), which corresponds to two samplings per period].
Frequencies higher than the Nyquist frequency are not lost
but are mapped into a smaller apparent value of f, given by
fapp ¼ fN � ( freal � fN). This phenomenon is called aliasing
and can be easily understood by considering a sinusoidal
wave, sampled at isolated points: at least two points per pe-
riod are needed to obtain a good estimate of the period. If
the sampling is longer than one period, than the retrieved
period is larger, and its ‘‘ghost’’ signature may appear in the
frequency range of interest.
To avoid this problem, we used an ‘‘online’’ low-pass filter,

following the procedure of Quinn et al. (1991; based on the
work of Carpino et al. 1987). Our filter suppresses to a level
of 10�9 all Fourier terms with periods smaller than 66.7 yr
(stop-band) and attenuates to a level of 10�9 all Fourier terms
with periods between 66.7 and 200 yr. Terms with periods
larger than 200 yr are in the passband. (See added infor-
mation on Web site.)3 By following this procedure, we have
eliminated all frequencies connected with the orbital periods
of Saturn and the satellites.
Finally, to further reduce noise and emphasize large-scale

structures, we used a median filter (Press et al. 1996; Pitas
2000). Details about the use of the median filter and of the �2

test we devised to prove the efficacy of our filter can be found
in the Appendix.
To find an alternate way to distinguish between regular

and chaotic behavior, we also computed the MLEs for our set
of initial conditions. A detailed explanation of the theory of
Lyapunov exponents goes beyond the scope of this paper;
instead, we refer the reader to Lyapunov (1907) and Benettin
et al. (1980). The MLE is a measure of exponential stretching
of nearby orbits. The Lyapunov exponents are equal to zero for
regular orbits (they tend to zero in finite-time calculations),
while they assume positive values for chaotic orbits. The in-
verse of a Lyapunov exponent is the Lyapunov time TL. Smaller
values of TL indicate enhanced local stochasticity.
To estimate MLEs for orbits we used a modified version of

SWIFT-LYAP2, a code that integrates the difference equation
(Mikkola & Innanen 1999; Morbidelli 2002) in the SWIFT
package (Levison & Duncan 1994). The code was modified
to reduce the integration error by integrating the planets in
the heliocentric frame and the satellites in the planetocentric
frame. For each of the test particles, we integrated the differ-
ence equation with an initial difference vector of modulus
d(0) ¼

ffiffiffi
6

p
; 10�9 and determined the modulus d(t) of the

displacement vector between the two vectors at time t. We
constructed a series {t, ln½d(t)=d(0)�} and performed a linear
least-squares fit on this series. Since d(t) ’ d(0) exp (Lt), where
L is the Lyapunov exponent, the slope of ln ½d(t)=d(0)� versus
time is equal to the maximum Lyapunov exponent. We com-
puted the Lyapunov exponents for all orbits in our low-resolution
survey. We show these results in the following section.
We should point out that FAM and MLEs, while both useful

tools to investigate chaotic behavior, measure different things.
FAM measures macroscopic changes in frequencies (i.e., the

Fig. 3.—Contour plots that show the periods of libration or circulation in !
in years. The argument of pericenter ! lies on the horizontal axis, and on the
vertical axis x ¼ 1� e2. The solid parabolic line identifies the separatrix
according to the secular model for S/2000 S5 Kiviuq’s � at the maximum
eccentricity. The dashed line shows the approximate location of the actual
separatrix. (See Fig. 2.)

2 For simplicity hereafter when referring to periods of precession and/or
libration of test particles, we will only say precession. 3 See http://www.astro.cornell.edu/�valerio/FFT/index.html.
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speed at which chaotic motion changes the frequencies), while
TL measures the rate of exponential stretching of nearby
trajectories. These two techniques are complementary: FAM
is more practical in finding regions that are macroscopically
unstable, and TL can reveal the presence of different chaos-
generating mechanisms. We discuss these aspects of the two
methods in more detail in x 4.
4. ORIGINS OF CHAOS IN THE KOZAI RESONANCE

To investigate the presence of chaos, we applied FAM to
our low-resolution survey, integrated under the influence of
the four Jovian planets. Figure 4 plots log � for our low-
resolution survey when the time interval between the first
and the second frequencies was about 1 Myr. The figure shows
that high values of � are found near the actual separatrix. The
chaotic layer is asymmetric between values of ! > 90� versus
values of ! < 90�, and Kiviuq seems to be on the border of
the chaotic layer.

Having shown that a chaotic layer exists, the next logical
step is to ascertain its origin. Let us recall the analytical model
presented in x 2. In that model, the shape of the separatrix
depends on Saturn’s semiminor axis b 0, which is a function
of the semimajor axis and eccentricity. Variations in Saturn’s
semimajor axis and eccentricity may therefore generate com-
plex orbital evolution near the separatrix. But on what time-
scales? And how can we prove this hypothesis?

To study whether a variable b 0 may generate chaos, we per-
formed a numerical simulation with the Sun (Saturn) on an orbit
of fixed eccentricity (equal to the average value of the Saturnian
eccentricity) and the set of test particles used for our low-
resolution survey. The difference compared with the integrable
model is the presence of short-period terms. We performed
FAM on test orbits in our low-resolution survey and found that
all orbits are regular in this case. In contrast, when only Saturn
and the Sun were present and Saturn had a constant eccentricity
equal to the mean value computed during the 46,000 yr period
of oscillation (=1=g6), no chaos was observed. This seems to
confirm our intuition that variations in Saturn’s eccentricity and
semimajor axis may be responsible for the chaotic layer.

To test this hypothesis, we performed a simulation in which
both Saturn and Jupiter are present. In this case the layer of

chaos appears (Fig. 5). The similarity between Figures 4 and 5
suggest that the effects of Uranus and Neptune are unimpor-
tant. To demonstrate this, we performed two simulations with
our low-resolution survey, one with the complete OSS and the
other with just Jupiter and Saturn. To show that the results are
nearly equal we applied the �2 test (see the Appendix) to the
filtered results of both simulations. We obtained a value of �2

of 22.4 (out of a maximum number of 399), indicating a very
high probability that the two distributions are the same. While
perturbations from Uranus and Neptune might play a role in
modifying the chaotic layer, such perturbations are clearly less
important than Jovian perturbations. So, in the following we
only consider Jovian perturbations. In doing so, we of course
modify the values of planetary frequencies and mean motions
and, therefore, the positions of any secondary resonances. But
since in this phase of our work we are interested in under-
standing on what timescales the chaotic behavior is driven, we
believe this is an acceptable approximation.

There are two prominent timescales for oscillations of
Saturn’s e and a: the secular oscillations (period on the order
of 1=g6 ’ 46; 000 yr) and the oscillations related to the GI
(883 yr). To study which of these perturbations is more rele-
vant to the origin of chaos, we describe the OSS’s orbital evo-
lution in terms of Fourier series (Bretagnon & Francou 1988).
In this model, the equinoctial orbital elements (a, k, K ¼
e cos$, H ¼ e sin$, Q ¼ sin1

2
I cos�, and P ¼ sin1

2
I sin�)

are developed in series of cosines and sines of combinations
of 12 angles: four mean longitudes of the giant planets, four
proper longitudes of pericenter, and four proper longitudes of
the nodes. These proper angles are linear functions of time.
This model ensures a fractional precision better than 5 ; 10�5

for K, H, Q, and P over 10 Myr.
To investigate what minimal model can create a chaotic layer

similar to the one observed in the full problem, we used dif-
ferent solutions for the orbits of both Jupiter and Saturn. We
modified our version of SWIFT-WHM so that both orbital
evolutions of Jupiter and Saturn are computed ‘‘online’’ ac-
cording to the Bretagnon secular solution. The test particles
are then subjected to perturbations of planets that evolve on
such orbits. We considered four models for Saturn’s orbital
evolution: (1) SEC, in which we limit the expansion to terms
containing the g5, g6, and s6 frequencies for K, H, Q, and P,

Fig. 4.—Low-resolution survey, gray-scale plots of �-values for �T ¼
1 Myr. The solid parabolic arc in the figure’s center represents the separatrix
according to the secular model. (See Fig. 2.) Chaotic orbits are associated
with lighter shades (i.e., higher values of log �; see gray scale at right).

Fig. 5.—Level of chaos for a simulation in which particles are subjected to
the gravitational perturbations from Saturn and Jupiter. Chaotic orbits are in
white, while orbits of regular behavior are in black. (See gray scale at right.)
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assume a constant semimajor axis, and take 12 terms for k’s de-
velopment; (2) A21SEC, in which we have included 12 terms
associated with the 1:2 commensurability between Jupiter’s and
Saturn’s mean motions, and terms associated with the GI for the
development in a, plus the same terms as in the SEC solution;
(3) GISEC, in which there were eight terms forK andH, six terms
for P and Q associated with the GI, and a constant semimajor
axis; and (4) A21GISEC, which includes the 2:1 terms in a, the
GI terms, and the secular variations. Table 2 gives the number
of terms taken in a, k, (K, H ), and (Q, P) for each solution.

Figure 6 shows the results of the integrations with these
models. All simulations used the same solution for Jupiter

(10 terms in the development of a, two terms for K and H,
two for Q and P, and 12 for k). These figures may be com-
pared with Figure 5, where the traditional version of SWIFT-
WHM was used.
Table 3 presents the results of a �2 test in which we com-

pared simulations with Bretagnon models with those of the full
integration of Jupiter and Saturn. According to these results,
terms associated with the GI and the 2:1 terms in the devel-
opment of Saturn’s semimajor axis are the most important for
the presence of the chaotic layer. The major sources for chaos
are the variations in Saturn’s eccentricity connected to the GI.
To further investigate this hypothesis, we computed the

MLEs for the particles of our low-resolution survey, in a model
containing Jupiter and Saturn. Figure 7 shows the resulting
values of TL when the full problem is considered (left) and
when the planets evolve according to the SEC solution (right).
A remarkable feature of Figure 7a is the region of high values
of TL (i.e., a smaller degree of local stochasticity) near the
vertex of the separatrix, which, according to the FAM, is a
region of high dispersion of the frequencies. In this region
TL � 1700 yr, that is, twice the period of the GI; thus, our
results suggest that the feature is connected to a secondary
resonance with the GI. Note however that all orbits seem to

Fig. 6.—Measures of chaos for the simulation with the SEC Bretagnon solution (top left), for the A21SEC Bretagnon solution (top right), the GISEC solution
(bottom left), and the A21GISEC solution (bottom right). Light shades correspond to log � = �3 or to more chaotic orbits.

TABLE 2

Number of Terms in a, k, (K,H ), and (P,Q) Used for Four Separate

Solutions of Saturn’s Orbit Based on the Bretagnon Model

Model a k (K, H ) (P, Q)

SEC .................................... 1 12 2 2

A21SEC ............................. 12 12 2 2

GISEC ................................ 1 12 8 6

A21GISEC ......................... 12 12 8 6
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have quite small values of TL. Orbits inside the libration island,
which, according to FAM, are macroscopically regular, have
TL < 2000 yr. This appears to be a general characteristic of
high-inclination irregular satellite orbits, as all seem to have
TL < 10; 000 yr (M. Holman 2003, private communication).

The existence of a region characterized by relatively long
Lyapunov times, on the one hand, but high-frequency disper-
sion, on the other, seems counterintuitive at first. However,
recall that the rate of frequency dispersion is a macroscopic
characteristic of the orbit that is related to the global structure
of the phase-space region. In contrast, the Lyapunov time is a
local property whose value is dictated by the mechanism that
is responsible for the chaotic motion.

The existence of regions of large TL but rapid diffusion is not
uncommon in the asteroid belt. For example, in the 7:3 reso-
nance (see Tsiganis et al. 2003), the smaller values of TL are
observed at the borders of the resonance, where they are related
to the pulsation of the separatrix due to secular precession.
However, the macroscopically most unstable region is located
at smaller libration amplitudes, is characterized by larger val-
ues of TL, and is related to the location of the �6 secular res-
onance. Similar results can be shown for other low-order mean
motion resonances (e.g., 2:1 and 3:1), where the most unstable
zones are generated by coexisting secular resonances. As TL’s
value is typically on the order of the forcing period (e.g.,

1=g5 � 305; 000 yr, 1=g6 � 46; 000 yr; Tsiganis & Morbidelli
2003), these regions generally have higher values of TL than
the region associated with the pulsating separatrix of the mean
motion resonance.

We are likely observing a similar phenomenon in the case
studied here. We believe that this high-TL region is associated
with a secondary resonance, involving the GI period. This is
also supported by the results shown in Figure 7b (SEC solu-
tion), where all orbits inside the libration zone become regular.
(Note the different scale compared with Fig. 7a.) To further
support our claim, we selected a particle from this high-TL
region, for which we plot the time evolution of the argument
$� �� 5kS þ 2kJ þ 3�S (Fig. 8). This corresponds to one of
the possible critical arguments of the 1:1 resonance between
the frequency of ! ¼ $� � and the frequency of the GI,
2kJ � 5kS. (The factor 3�S is added in order to fulfill the
d’Alembert rules of permissible arguments; i.e., the sum of
coefficients of individual longitudes must be zero, and the sum
of coefficients of nodal longitudes must be even.) The behavior
of the arguments switches erratically between intervals of
libration and circulation, which indicates a transition through
the separatrix of this secondary resonance.

The following picture arises from our low-resolution surveys:
Twomajor sources of chaos exist in the system. One is connected
to the transition region from circulation to libration and, in par-
ticular, is driven by variations in Saturn’s eccentricity, mainly
associated with GI terms and variations in Saturn’s semimajor
axis. The other is related to a secondary resonance involving the
argument of pericenter ! and the GI terms for circulating par-
ticles. In most cases this resonance is a stronger source of chaos
than the transition region. Better resolution is needed to under-
stand the behavior and shape of this resonance (see x 5).

One problem that remains to be explained is the asymmetry
of the chaotic layer with respect to ! ¼ 90� (see Figs. 5–7).
According to the secular model, the result should be sym-
metric. Our simulations with the Bretagnon model suggest that
variations in Saturn’s semimajor axis may be partly responsible
for the asymmetry. Alternatively, the asymmetry in the chaotic
layer may be related to our choice of initial conditions. To
exclude this second possibility, we need to ascertain that our

TABLE 3

�2
Test Comparision of Four Bretagnon Simulations

Model �2

SEC ............................................................. 2741.6

A21SEC ...................................................... 132.3

GISEC ......................................................... 70.7

A21GISEC .................................................. 33.5

Note.—This �2 test compares the filtered results of four
Bretagnon simulations with the filtered results for a full
simulation involving Saturn and Jupiter. Smaller values of
�2 indicates a better fit. (The maximum number of degrees
of freedom is 399; see the Appendix.) The models are
described in the text.

Fig. 7aFig. 7bFig. 7.—Lyapunov time for integrations (a) when the traditional version of the Lyapunov integrator is used and (b) when the SEC solution of the Bretagnon model is
applied. Panel (a) has a feature of long Lyapunov times, associated with a region of high frequency dispersion, but in (b) we see that this feature disappears when
the SEC solution is used. The substantially different gray scales used in the two figures were chosen to maximize the contrast between nearby features of TL.

Fig. 7a Fig. 7b
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choice of initial conditions (� and M ) for the test particles’
orbits is not introducing spurious effects. To our knowledge,
three resonant configurations may alter the eccentricities of the
test particles and so put their orbits closer or farther away from
the region of chaos that we are interested in. The three reso-
nances are ‘‘nodal’’ (�� �� ¼ const), pericentric ($�$� ¼
0), and the evection inequality [2($� k�) ¼ constant (= 45

�
,

so as to have an intermediate value of the evection angle)].4 In
our simulation, the Sun’s orbit starts with � ¼ 23N162, ! ¼
311N992, and M ¼ 322N291. We computed � for the test orbits
according to the resonant configuration. For the pericentric
resonance, we used two values of the resonant argument: $ �
$� ¼ 0 and$�$� ¼ 180�, k� k� ¼ 180� (Yokoyama et al.
2003). The second configuration maximizes the perturbing
effect of the pericentric resonance.

To have a quantitative measure of the asymmetry, we use an
‘‘asymmetry coefficient’’ that is the difference of �’s values
for ! larger and smaller than 90�. To compute this coefficient
for orbits in the libration island (60� < ! < 120�), we take
two columns symmetric about ! ¼ 90

�
(e.g., the columns for

! ¼ 60� and ! ¼ 120�, with the obvious exclusion of the col-
umn for! ¼ 90�) and compute the fractional difference for each
pair. We repeat the process for all pairs of values and compute
the average and standard deviation of the measurements. The
average value is our asymmetry coefficient, and the standard
deviation gives an estimate of the error. Obviously, the lower
the asymmetry coefficient, the more symmetric is the distri-
bution of � around ! ¼ 90�.

Table 4 gives asymmetry coefficients for each simulation.
Since the secular resonance with resonant argument equal to
0� seems to give the more symmetric configuration, we believe
its effect might be the dominant one (but large errors prevent a
firm conclusion).

5. A WEB OF SECONDARY RESONANCE CROSSES
THE KOZAI RESONANCE

The low-resolution survey has yielded information regarding
the large-scale structure of chaos inside the Kozai resonance.

However, because most of the chaotic behavior is present
near the boundary region between circulation and libration, we
now concentrate on analyzing this region in more detail. For
this purpose, we constructed a new set of initial conditions:
we used 276 bins in inclination, starting at 37N5 and separated
by 0N02. We used one ! (= 90N0). The choice of the other orbital
elements followed the same criteria used for the low-resolution
survey. We called this new set of initial conditions the ‘‘high
resolution’’ survey. We concentrate on the region around ! ¼
90� to eliminate the problems associated with asymmetries in
! suggested by our low-resolution survey. Results of integra-
tions of test particles with ! equal to 89N8 or 90N2 are very
similar to those with ! ¼ 90

�
and are not shown. Our choice

of values for the particles’ inclinations allow us to sample pe-
riods in libration and circulation that go from a minimum of
450 yr to a maximum of 820 yr for librating particles and from
a minimum of 650 yr to a maximum of 1820 yr for circulating
particles, thus covering the whole transition region.
We integrated the test particles of our high-resolution sur-

vey under the influence of the four Jovian planets for 2 Myr
and applied FAM. Figure 9 shows two regions of high cha-
oticity. The one at x ’ 0:73 is clearly associated with the tran-
sition from circulation to libration: test particles switch from
!-circulation to !-libration at this x (dotted line). The other re-
gion of strong chaotic behavior at x ’ 0:68 is associated with
the pericentric secular resonance ($�$S ¼ 0). Figure 10 (a)
shows the time evolution of the resonant argument for an orbit
in this resonance (x0 ¼ 0:6848).
More interesting for our purposes is the region at x ’ 0:696.

A plot of the resonant argument $� �� 5kS þ 2kJ þ 3�S

shows that this feature is associated with the 1:1 resonance
between ! and the GI (other resonances involving $S and $J ,
instead of �S) are also present but are weaker. This property
is generally shared by other resonances involving harmonics
of the GI period, such as the 4 :3 and 3:2). The resonance we
discovered is only present for circulating particles. A question
that might arise is if a similar resonance could also be found for
librating test particles. To answer this question we consider
the periods of libration and circulation and estimate them by
the frequency associated with !’s precession found via FAM.
Figure 11 shows such periods as a function of x. We also report
the regions having high values of �, possibly associated with
secondary resonances (vertical lines), and the commensura-
bilities between periods in ! and GI periods (e.g., the 4 :3 com-
mensurability means that 4 times the value of the !-frequency
is equal to 3 times the value of the 2kJ � 5kS frequency).
We are conscious that the commensurabilities between the

GI and ! are not real resonances, since they do not respect the
d’Alembert rules. Nevertheless, we think this is a useful plot,

Fig. 8.—Time evolution of the angle $� �� 5kS þ 2kJ þ 3�S for an
orbit in the region of the secondary resonance involving the GI (x0 ¼ 0:756,
!0 ¼ 90�). Note how the resonant argument alternates between periods of
libration and periods of circulation. This particle has a large value of �.

TABLE 4

Values of the Asymmetry Coefficient

Simulation Initial Condition (%)

Nodal resonance..................... � � �� = const 60 � 13

$ � $� = 0� 55 � 12

Pericentric resonance ............. $ � $� = 180� 64 � 14

Evection inequality ................ 2($ � k�) = 45� 60 � 18

Note.—These values are for four simulations with different initial
conditions, corresponding to particles all having the same values of (1)
�� �� ¼ constant, (2)$�$� ¼ 0�, (3)$�$� ¼ 180�,k� k� ¼
180�, and (4) 2($� k�) ¼ 45�. Case (2) seems to be the most sym-
metric, but all results overlap to within the errors.

4 Since the evection term in our case is not resonant (Nesvorný et al. 2003),
we refer to the angle 2($� k�) as the evection inequality.
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since it gives a first-order estimate of the position of the real
resonances. To compute the expected positions of the actual
resonances we used the following procedure: For a resonance
of argument $� �� 5kS þ 2kJ þ 3�S (we use ! for $� �
hereafter), the frequency of !’s precession for which there is
resonant behavior is given by

f! ¼ fGI � 3fs6 ; ð9Þ

where fGI is the frequency associated with the GI term
(2kJ � 5kS, equal to 1467B72 yr�1 for the current position of
the planets), fs6 is the frequency associated with �S (equal to
�26B345 yr�1; Bretagnon & Francou 1988; the same source is
used for the values of g5 and g6), and f! is the precession
frequency. Analogous equations can be used for other reso-
nances. From !’s frequency it is straightforward to determine
the period of precession, and from that period we can deter-
mine the value of x. Figure 11 seems to be very instructive.
For example, since the period of the 1:1 resonance is 840 yr
and since the first test particle in librating regime has a period
of 820 yr, at the end of the transition region, there is currently
no equivalent of the GI secondary resonance for librating
particles. Also, apart from the two regions with � associated
with the pericentric secular resonance and the GI resonance,
another interesting feature of high chaotic behavior, which
seems to be associated with a strong secondary resonance,
appears at x ¼ 0:73. Figure 11 shows how in this region the
values of periods in ! are constant, which is an indication of
librating behavior in a secondary resonance. Other regions of
high �-values can be found at x ¼ 0:722 and, in the librating

region, at x ¼ 0:741. (Since this region is so close to the
separatrix, the chaotic behavior here observed might be related
to the pulsating behavior of the separatrix itself, when per-
turbations from other Jovian planets are considered.)

We believe that the features of high � at x ¼ 0:722 and 0.73
are associated with two other secondary resonances, whose
resonant arguments are given by 4($� �)� 3(5kS � 2kJ) þ
8�S þ$S and 3($� �� 5kS þ 2kJ þ 3�S)þ (�� �S), re-
spectively. Figures 10c and 10d show the behavior of the
argument for orbits near these two resonances. Other weaker
resonances connected with other commensurabilities between
! and 2kJ � 5kS are also observed. The resonance of argu-
ment 3($� �)� 2(5kS � 2kJ)þ 5�S þ$S is expected to be
stronger than the one associated with the 4:3 commensura-
bility, but its location is so close to the separatrix that its effect
is difficult to discern. Table 5 lists the resonances for which
the librating behavior of the resonant argument is observed and
a few candidates that could explain features of weaker chaos.

So far we have only discussed the case of circulating test
particles. Features of weaker chaos, however, also exist in the
librating region. Unfortunately, in this case plotting the reso-
nant argument is not so easy, since, by the definition of libra-
tion, ! oscillates around �90� instead of covering all values
from 0� to 360�. A possible way to overcome this problem
would be to make a change of variables, so as to put the origin
of the system of coordinates for e cos ! and e sin ! at the li-
bration center. The new angle !0 would then rotate from 0� to
360�, and it would then be possible to check for the behavior
of the resonant arguments by combining !0 with GI and other
terms. This procedure is rather cumbersome, especially since
the libration point itself is not a fixed point, but, because of
perturbations from the other Jovian planets, oscillates with
timescales associated with the GI, g5, g6, s6, etc. Fortunately,
there is an alternative method to determine whether a resonance
has in its resonant argument terms associated with the GI.

It is widely believed that planets have migrated since their
formation (Malhotra 1995; Gomes 2003; Levison &Morbidelli
2003). In particular, the gravitational scattering of a planetesi-
mal disk modified the positions of the Jovian planets so that,
while Saturn, Uranus, and Neptune migrated outward in semi-
major axis, Jupiter, being the most effective scatterer, migrated
inward. As the work of Malhotra suggests, the origin of the
highly eccentric, inclined, and Neptune resonance–locked or-
bits of Pluto and the Plutinos might be explained in the con-
text of sweeping resonant capture due to the changing position
of Neptune’s orbit. Our work has shown that a major source
of chaos for test particles in the Kozai resonance around
Saturn is due to a secondary resonance between the argument
of pericenter !, the argument of the GI (i.e., 2kJ � 5kS), and
terms connected with the planetary frequencies g5, g6, and s6.
It is well known that by altering the positions of Jupiter and
Saturn the period of the GI changes. Figure 12 shows how, by
varying the initial value of the osculating semimajor axis of
Jupiter by a positive amount (and keeping the position of
Saturn fixed), it is possible to modify the period of the GI
from the current value of 883 yr to values of ’400 yr or less.5

Fig. 9.—Plot of log � vs. initial x for our high-resolution survey. The dashed
vertical lines show the transition region in which particles may switch behavior
from circulation to libration. Vertical lines identify regions of high and low �
connected with secondary resonances or with the pericentric secular resonance.
We identify the resonances by the following code: Per. res. identify the peri-
centric secular resonance of argument$�$�, 1:1 the secondary resonance of
argument $� �� 5kS þ 2kJ þ 3�S, and 4 :3 the resonance of argument
4($� �)� 3(5kS � 2kJ)þ 8�S þ$S. The resonance 3(1:1) has argument
3($� �� 5kS þ 2kJ þ 3�S)þ (�� �S) and is connected with a region of
low �-values, whereas 3: 4 and 2 :3 refer resonances of arguments 3($� �) �
4(5kS � 2kJ)þ 11$S þ �S and 2($� �)� 3(5kS � 2kJ)þ 8�S þ$S, re-
spectively. The major sources of chaos for the system are the transition region
and the pericentric secular resonance at x ¼ 0:68. Especially important in the
context of planetary migration is the secondary resonance between ! and the GI
at x ¼ 0:696 (1:1 in the figure). The high-� feature at x ¼ 0:713 is connected to
the 1:1 resonance of argument $� �� 5kS þ 2kJ þ 2$S þ �S.

5 A similar change can also be achieved by modifying the initial value of
the difference in mean longitude of Jupiter and Saturn (Ferraz-Mello et al.
1998). This alternative method has the advantage of better preserving the values
of the secular frequencies of the planets (i.e., g5, g6, and s6). However, in this
work we are interested in the actual effect of planetary migration, which alters
the semimajor axes of the planets, and so we prefer to use the first method.
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The average and minimum values of !’s libration periods for
particles in Kiviuq’s region are 640 and 480 yr, respectively.
Presently, the GI resonance has one location, just outside the
separatrix, in the region of circulating particles. An interesting
question would be to see what happened if the GI resonance
had a shorter period. In particular, when the value of the GI was
shorter than ’820 yr (the maximum period of libration), a new
secondary resonance should appear in the region of librating
orbits. When the GI’s period was 640 yr, several particles in the
libration island would have been in the region of this new
secondary resonance. This can be seen in Figure 13, which
shows the results of the integration of our low-resolution sur-
vey integrated under the influence of Saturn and a Jupiter
whose orbit was modified so that the period of the GI was (left)
640 yr and (right) 480 yr. We call these simulations ‘‘static
integrations,’’ as opposed to other simulations discussed in x 6,
for which the period of the GI is not fixed but changes with
time. Note how the position of the high-chaoticity region,

which our simulations show to be connected to the 1:1 reso-
nance between ! and the GI, is displaced upward with respect
to the traditional integration for the first case and is very close
to the center of the libration island for the second case. More
importantly, a significant fraction (25%) of orbits that stayed
inside the libration island in the integration with the present
configuration of the planets were on switching orbits when the
period of the GI was 640 yr.
These simulations show that indeed a 1:1 resonance between

! and the GI (and the other terms needed to satisfy the
d’Alembert rules) was present in the libration region when the
GI’s period was lower. Coming back to our problem of iden-
tifying secondary resonances for the high-resolution survey,
the method applied to our low-resolution survey to change the
GI’s period can give useful insights on the identity of those
resonances. Figure 14 shows how the frequency with largest
amplitude in the spectra obtained with FAM (just the fre-
quency with largest amplitude, not necessarily the frequency

Fig. 10aFig. 10bFig. 10cFig. 10dFig. 10.—Resonant arguments for test particles in the (a) pericentric secular resonance, (b) resonance of argument $� �� 5kS þ 2kJ þ 3�S, (c) resonance of
argument 4($� �)� 3(5kS � 2kJ)þ 8�S þ$S, and (d) 3($� �� 5kS þ 2kJ þ 3�S)þ (�� �S). All these particles show periods of libration for their respective
resonant angles. The orbital elements of planets and satellites are computed with respect to the solar system’s invariable plane.

Fig. 10a Fig. 10b

Fig. 10c Fig. 10d
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associated with !’s precession) for our high-resolution survey
changes with x. When a secondary resonance is encountered,
values of the frequencies spread around rather than following a
quasi-linear behavior. (The feature associated with the peri-
centric secular resonance at x ¼ 0:68 is most instructive.)

To test our interpretation of the secondary resonances, we
modified Jupiter’s position so that the GI period became 810,
883 (current value), and 950 yr, respectively, and integrated

the high-resolution survey with the three configurations.
Figures 15a, 15b, and 15c illustrate what happens to the fre-
quencies for these three values of the GI, for the region of
the 1:1 resonance, the 4:3, and for librating particles, respec-
tively. Figure 15a shows the behavior in the region of the 1:1
resonance. The resonance position (computed using eq. [9] and
the different GI periods) shifts toward larger x when the GI
period becomes longer. When the period equals 810 yr, the
position of the resonance corresponds to that of the pericentric
secular resonance (note how its position does not move when
the GI period is changed), and it goes to higher values of xwhen
we increase the period. The vertical lines represent the expected
position of the resonance when the GI period is modified. The
fact that there is an excellent agreement between the predicted
position of the resonance and the results of our numerical
simulation seems to further confirm our hypothesis for the
source of chaos in this region.

Figure 15b shows the same plots, but for x ¼ 0:71 0:735.
This region contains two resonances, of argument 4($� �) �
3(5kS � 2kJ)þ 8�S þ$S and 3($� �� 5kS þ 2kJ þ 3�S)þ
(�� �S): these are given the shorthand notation of 4:3 and
3(1:1). Once again, the numerical simulations demonstrate that
the chaos zones move with the resonances; that is, they agree
with the predictions based on our resonant arguments (vertical
lines).

Figure 15c shows the values of the frequencies of largest
amplitude for the region of librating satellites. The dashed
vertical lines represents the transition region in which particles
alternate from circulating to librating behavior. The left panel
shows substantial frequency diffusion near the separatrix, when
PGI ¼ 810 yr, not observed for longer GI periods. We believe
that this is due to the appearance of the 1:1 resonance (having
argument$� �� 5kS þ 2kJ þ 3�S) in the region of librating
particles. (See the vertical line on the plot.) This resonance is
simply out of the range of periods in ! for librating particles
when PGI > 820 yr.

Regarding other resonances in the region, we are still lim-
ited by the problem of plotting the resonant argument. How-
ever, our simulations suggest at least two other resonances in
this region: 2($� �)� 3(5kS � 2kJ)þ 8�S þ$S and 3($ �
�)þ 4(5kS � 2kJ)þ 11�S þ$S. Figure 15c shows how the
expected positions of these resonances shift when the GI

Fig. 11.—Periods of !’s precession obtained with FAM as a function of x.
Vertical lines represent the locations of features of high � associated with
secondary resonances, identified by the same code used for Fig. 9; the dashed
vertical lines show the transition region in which particles may switch be-
havior from circulation to libration, and the horizontal lines report the location
of the commensurabilities between ! and the GI. The positions of the actual
resonances differ slightly from that of the commensurabilities. (See eq. [9].)

TABLE 5

Resonant Arguments for the Secondary Resonances

Resonant Argument Observed?

$ � � � 5kS + 2kJ + 3�S........................................ Yes

$ � � � 5kS + 2kJ + 2$S + �S .............................. Yes

$ � � � 5kS + 2kJ + 2$J + �S............................... No

3($ � �) � 2(5kS � 2kJ) + 5�S + $S .................... No

3($ � �) � 2(5kS � 2kJ) + 5$S + �S .................... No

3($ � �) � 2(5kS � 2kJ) + 5$J + �S..................... No

4($ � �) � 3(5kS � 2kJ) + 8�S + $S .................... Yes

4($ � �) � 3(5kS � 2kJ) + 9$S ............................. Yes

4($ � �) � 3(5kS � 2kJ) + 9$J.............................. No

3($ � � � 5kS + 2kJ + 3�S) + (� � �S) ............... Yes

3($ � � � 5kS + 2kJ + 3$S) + (� � $J) ............... No

3($ � � � 5kS + 2kJ + 3$J) + (� � $S)............... No

2($ � �) � 3(5kS � 2kJ) + 8�S + $S .................... Strongly suspected

2($ � �) � 3(5kS � 2kJ) + 9$S ............................. Suspected

2($ � �) � 3(5kS � 2kJ) + 9$J.............................. Suspected

3($ � �) � 4(5kS � 2kJ) + 11�S + $S .................. Strongly suspected

3($ � �) � 4(5kS � 2kJ) + 11$S + �S .................. Suspected

3($ � �) � 4(5kS + 2kJ) + 11$J + �S.................... Suspected

Note.—The resonant arguments are for the secondary resonances that we
observed or suppose to exist for the region near the separatrix of the Kozai
resonance. The second column reports if the resonant argument was observed
to librate. We used the word ‘‘suspected’’ or ‘‘strongly suspected’’ for reso-
nances inside the libration region, whose positions, when the period of the GI
was changed, moved according to our predictions. Other resonances involving
higher commensurabilities between !(¼$� �) and the GI are weaker and are
not reported.

Fig. 12.—Period of the GI as it varies with positive expansions in Jupiter
semimajor axis, assuming Saturn’s orbit is fixed.
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period is modified. In each case, the expected position is very
close to regions of frequency variation. We believe that this is
strong circumstantial evidence in favor of the existence of
these resonances. Other resonances containing combinations
of only $J or $S instead of �S (plus any other term needed
to satisfy the second d’Alembert rule) in their argument are
also possible but, as observed in other cases, are associated
with features of weaker chaos. (Their locations are not shown
in Fig. 15.) Regarding Figure 15c, we observe that the reso-
nance positions shift toward the separatrix as the GI period
increases.

To conclude, we have identified several secondary reso-
nances connected to the GI for the region near the separatrix
of the Kozai resonance. The likelihood that the Jovian planets
had different past positions means that the locations of these
resonances might have also been different. This introduces

interesting new perspectives for the stability of primordial sat-
ellites inside the Kozai resonance, which we now investigate.

6. EFFECTS OF PLANETARY MIGRATION ON ANY
PRIMORDIAL POPULATION OF SATELLITES

IN THE KOZAI RESONANCE

We have just argued that a web of secondary resonances
involving !, the argument of the GI, and other terms exists in
the region of phase space around the separatrix between li-
bration and circulation. Considering that the period of the GI
might have been different in the past, we ask ourselves whether
a mechanism of sweeping secondary resonances inside the
Kozai resonance, not dissimilar from the one that acted in the
Kuiper Belt, could also have acted inside the Kozai resonance.
If that is the case, what are the repercussions for the stability of
satellites’ orbits in the Kozai resonance?
To address these questions we need to (1) have a model of

planetary migration and (2) have an integrator able to simulate
the effect of planetary migration for Jupiter and Saturn. Fol-
lowing Malhotra (1995), we assume that the semimajor axis
varied as

a(t) ¼ af ��a exp (� t=�); ð10Þ

where af is the semimajor axis at the current epoch, �a is the
change in semimajor axis (equal to �0.2 AU for Jupiter and
to 0.8 AU for Saturn), and �(¼ 2 ; 106) is a characteristic
timescale for migration. For the integrator to simulate planet
migration, we followed this recipe. We modified SWIFT-
WHM so that an additional drag force was applied to each
planet along the direction of orbital velocity. (By the symbol v̂
we identify an unit vector along the direction of orbital ve-
locity.) This produces an acceleration

�v̇ ¼ v̂

�

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G0Msun

af

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G0Msun

ai

r !
exp

�t

�
; ð11Þ

where v̇ is the acceleration and ai is the initial position of a
planet (Malhotra 1995). We neglected the effect of the plane-
tesimals’ perturbations on the satellites. Figure 16 displays sev-
eral computed evolutions of Saturn’s and Jupiter’s semimajor

Fig. 13.—Shaded plots of � when the GI’s period was 640 yr (left) and 480 yr (right). The position of the secondary resonance shifts upward toward the center of
the libration island in the second case. (The minimum period of libration is 480 yr.)

Fig. 14.—Variations in the frequency with largest amplitude as a function
of x. When a resonance is encountered, frequency values are scattered
(x ¼ 0:68 0:69). Vertical lines show the positions of secondary resonances,
identified with the same convention used for Figs. 9 and 11. The frequency
curve is not continuous at x ¼ 0:71 because different frequencies have their
largest values of amplitude for different regions in x. The dashed vertical lines
show the location of the transition region, where orbits switch behavior from
circulation to libration.
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axes. The two curves agree well. These are to be compared to the
results of Beaugé et al. (2002) who used SWIFT-RMVS3 to
simulate the evolution of a disk of 1000 massless planetesimals
subjected to the gravitational perturbations of the four major
outer planets. The evolutions of the planet’s semimajor axes
generally follows the exponential law of equation (10) but in
addition are affected by short time variations due to the impulses
of single encounters.

Having now the tools for our investigation, we must define
initial conditions for our simulations. To investigate the effect
of planetary migration on the stability of orbits in the Kozai
resonance, we first integrated Kiviuq with the integrator that
accounts for planetary migration backward in time for 10 Myr.
Not surprisingly, Kiviuq remained inside the Kozai resonance
for the full length of the integration. We then used the last
100,000 yr of the integration to compute the averaged orbital
elements of Kiviuq and �’s value (= 0.4322). Using this in-
formation, we generated a low-resolution survey of test par-
ticles, exactly as in x 2. We then integrated this new set of
initial conditions forward in time for 10 Myr. During this
forward integration, the GI’s period increased from 90 yr at
the beginning of the simulation to the current value of 883 yr
at the end of the integration.

Figure 17 shows the particles’ fates at t ¼ 0 (left) and t ¼
5 Myr (right). Fourteen percent of the particles originally in
the libration island were on circulating or switching orbits by
t ¼ 5 Myr. At the end of the simulation, 15% of the test parti-
cles originally in the libration island were no longer Kozai
resonators. The mechanism of sweeping secondary resonances
seems to be effective in depopulating the resonance. This mech-
anism not only affects orbits near the separatrix but also those
particles well inside the Kozai resonance. Examples are the
particles with !0 ¼ 85� and x0 ¼ 0:80 and 0.83 (Fig. 18), which
are very close to Kiviuq’s orbital region. This shows that this
region is also affected by the sweeping secondary resonances.

We explain these results in the following way: When, owing
to the planets’ migration, the secondary resonance’s period ap-
proaches ’400 yr, a few of the particle inside the Kozai reso-
nance (but only a fraction, as the process is not 100% efficient)
are captured into a secondary resonance and move further out
in the libration island with the resonance until the secondary
resonance’s period attains ’700 yr. (We refer the reader to the
last row of Fig. 15, where the position of the secondary res-
onances drifted toward the Kozai separatrix as time in-
creased.) For such libration periods, the orbits are so close to
the separatrix that escape becomes possible. This mechanism
seems to be confirmed by the time evolution (Fig. 18) in ! for
one of these particles (x0 ¼ 0:83, !0 ¼ 85

�
).

The fact that most particles escape from the Kozai resonance
in the first half of the simulation is not surprising. The period of
the GI reaches 600 yr during the first 5 Myr, that is, the average
value of the precession period for orbits in the Kozai reso-
nance. (See Fig. 3.) After 5 Myr, the growing value of the GI
period sweeps fewer and fewer particles inside the Kozai res-
onance, and the mechanism loses its efficacy.

Another interesting consideration is that not only librating
particles are pushed toward the separatrix, also some circula-
tors in general are captured by one of the secondary resonances
and are carried toward the separatrix. That circulators do not
generally become librators is because in order to cross the
separatrix they have to reach very high values of the preces-
sion period in ! (see Fig. 11). Once close to the separatrix,
they reach a highly chaotic region, and many particles are lost
from the secondary resonances. This mechanism could explain

Fig. 15aFig. 15bFig. 15cFig. 15.—Variations in the frequency having the largest amplitude as a
function of x, for three regions in x, and three values of the GI’s period (810,
883, and 950 yr, respectively). The first row of figures reports the region
around the 1:1 GI resonance, the second the region around the 4:3 resonance,
and the third the region of librating particles. Vertical lines show the expected
position of the resonance (identified at the top of the line) based on its resonant
argument. (We follow the same convention adopted in Fig. 9.) Dashed vertical
lines in the third row of figures show the position of the transition region. See
text for more details.

Fig. 15a

Fig. 15b

Fig. 15c
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why so many irregular satellites are currently found in the
proximity of the Kozai separatrix (Ćuk & Burns 2004).

A word of caution should be given about our results. We
only used a smooth exponential evolution (Malhotra 1995) for
the planet’s migration. In the real solar system, things were
most likely different from this model; for example, Hahn &
Malhotra (2000) introduced short-timescale variations in
Neptune’s outward expansion by adding some random jitter to
the torque applied to Neptune (see the a history by Beaugé
et al. (2002) shown in Fig. 16). This jitter was parameterized
by the standard deviation �jitter of the planet migration torque
in units of the time-averaged torque. For small values of �jitter
(<10), capture efficiencies in the 2 :1 resonances were sub-
stantially unaltered, and only when �jitter reached values larger
than 25 were capture probabilities reduced.

In our case, we can assume that a similar mechanism should
be at work and that any significant amount of short time

variations in the semimajor axes of both Jupiter and Saturn
might in principle reduce the capture efficiency into the GI
secondary resonance. Since our work is, in many ways, ex-
ploratory, we believe the use of the exponential model is de-
fensible at this stage of our study. But we acknowledge that a
more realistic model for the motions of Jupiter’s and Saturn’s
semimajor axes should be used, before realistic values of
capture probabilities for our mechanism of sweeping sec-
ondary resonances could be computed.
In any case, we believe that our mechanism of sweeping

secondary resonances might be an effective scheme for desta-
bilizing the primordial population of bodies originally in the
Kozai resonance. The mechanism should not be limited to
Kiviuq’s region. The fact that the GI’s period swept through
values starting from 90 yr at the beginning of the simulation
with planetary migration to the current 883 yr implies that an
analogous mechanism should also have been at work in the

Fig. 16.—Time evolution of the semimajor axes of Jupiter (left) and Saturn (right). The black band plots the results of our integrator, the triangles show the result
of the integration of eq. (10), and the line displays the results of a simulation on planetary migration from Beaugé et al. (2002), as described in the text.

Fig. 17aFig. 17b
Fig. 17.—Fate of test particles for our low-resolution survey, in which we used eq. (10) to simulate planet migration. (a) The orbital nature at the simulation’s

beginning; (b) t ¼ 5 Myr. The symbols are the same used in Fig. 2. At the end of the simulation, only one additional particle was lost from the libration island.

Fig. 17a Fig. 17b
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regions of the other Saturnian and Jovian satellites presently in
the Kozai resonance, for ! libration periods of less than 1000 yr.

7. SUMMARY AND CONCLUSIONS

We have analyzed the orbital behavior of satellites inside
and outside the Kozai resonance for the phase space around the
Saturnian satellite Kiviuq. Our goal was to identify areas of
chaotic behavior and to understand if chaotic diffusion might
have played an important role, now or in the past, for orbital
stability inside the Kozai resonance. By applying the FAM and
computing the MLEs, we identified several secondary reso-
nances. The major source of chaos for orbits in the circulating
region are secondary resonances involving the argument of
pericenter ! (=$� �), the GI’s argument (2kJ � 5kS), the
longitude of the node (�), and the planetary secular frequen-
cies (g5, g6, and s6). The region of transition between circula-
tion and libration of ! is strongly chaotic, when perturbations
from the other Jovian planets are considered. According to
our secular model, variations in Saturn’s semiminor axis (and
therefore in its eccentricity and semimajor axis) are what drive
the chaotic behavior, especially the transfer from circulation to
libration. While secular variations modulated by the g5, g6, and
s6 frequencies are not negligible, once again our results indi-
cate that the dominant effect is connected with perturbations
having the GI’s period.

Also, contrary to what might be expected from the secular
model, our results indicate that the chaotic layer at the boundary
between circulation and libration is not symmetric but shows an
asymmetry between values of ! larger and smaller than 90�.
This is a consequence of other perturbations connected with
secular pericentric resonance, evection inequality, and varia-
tions in Saturn’s semimajor axis, which are strongly dependent
on the initial conditions for particles’$ and the Sun’s position.
Our simulations suggest that the dominant effect is connected
with the secular resonance, but variations in Saturn’s semimajor
axis are not entirely negligible.

From our simulations we can introduce the following sce-
nario for chaotic orbits near Kiviuq’s Kozai resonance: Start-
ing from librating orbits close to the libration center, we possi-
bly identify two weak secondary resonances of argument
2($� �)� 3(5kS � 2kJ)þ 8�S þ$S and 3($� �) � 4(5kS
�2kJ)þ 11�S þ$S that introduce chaotic behavior. The
first strong source of chaos is, however, connected to the
transition region between circulation and libration; orbits start
to switch back and forth from circulation to libration, and the
whole region is characterized by high values of �. Once in the
circulating regime, a strong resonance of argument 3($� � �
5kS þ 2kJ þ 3�S)þ (�� �S) appears at x ¼ 0:73. In addition
to that resonance, the dominant source of chaos, excluding the
nearby pericentric secular resonance, is connected to a sec-
ondary resonance with the GI of argument $� �� 5kS þ
2kJ þ 3�S. (These orbits have argument-of-pericenter periods
of order 840 yr.) Orbits in the region of this secondary reso-
nance show some of the highest �-values among the test par-
ticles we studied. Other secondary resonances connected with
the GI are also observed.

The fact that the dominant source of chaos for orbits in
Kiviuq’s region is connected with the GI secondary resonance
opens interesting perspectives. It is believed that Jovian planets
formed in different locations from their current ones and then
migrated by gravitationally scattering the primordial popula-
tion of planetesimals (Malhotra 1995). The possibility that
planets occupied different semimajor axes in the past has im-
portant repercussions, since the GI’s period is connected to
the osculating semimajor axes of Jupiter and Saturn. In par-
ticular, when the two planets were closer together, the period
of the GI was shorter. We simulated this effect first by changing
the position of Jupiter so that the GI’s period was 640 and
480 yr, respectively (‘‘static integrations’’). These simulations
showed that, indeed, the position of the GI’s secondary reso-
nance shifted higher. A twin resonance for librating particles
appeared when the GI’s period equaled the average libration
period (640 yr) or the minimum (480 yr). (This resonance is not
visible today because the maximum period of libration inside
the Kozai resonance is ’820 yr.) Then we fully integrated
Jupiter and Saturn with an integrator that simulates planet mi-
gration according to the exponential law of Malhotra (1995).

Our results show that a mechanism of sweeping resonances,
analogous to the one that operated in the Kuiper Belt (Malhotra
1995) or inside the 2 :1 mean motion resonance with Jupiter
(Ferraz-Mello et al. 1998), must have operated as well inside
the Kozai resonance. Our simulations show that 15% of the
satellites originally inside the Kozai resonance became circu-
lators or exhibited switching behavior when planets acquired
their final orbits. Indeed, several particles were captured into
the secondary resonance with the GI (or other secondary res-
onances), and as a consequence, their amplitudes of oscillation
in ! increased until the test particles reached the boundary
between circulation and libration, where escape became pos-
sible. Several particles on circulating orbits were also pushed
toward the separatrix by an analogous mechanism of sweeping
secondary resonances (but none crossed the boundary to be-
come a librator). We believe that a similar mechanism might
have acted in the past also for the region of phase space as-
sociated with the other Jovian satellites currently inside or near
the Kozai resonance. This process could explain why so many
irregular satellites are currently found near the Kozai separatrix
(Ćuk & Burns 2004).

In this work we used several numerical tools. In a few
cases, for example, the median filter for our FAM results, we

Fig. 18.—Time evolution of ! for an orbit initially inside the Kozai reso-
nance (x0 ¼ 83, !0 ¼ 85�). At t ¼ 3:7 Myr, the particle is captured into the
secondary resonance with the GI. As a consequence, the amplitude of libration
slowly increases (the horizontal lines show the maximum amplitude of li-
bration) until the test particle reaches the separatrix of the Kozai resonance. At
that point, it escapes from the resonance and starts switching back and forth
from circulation to libration (around either 90� or 270�). At the end of the
integration (t ¼ 10 Myr), the particle was on a circulating orbit.
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introduced a technique that, while employed in other fields (e.g.,
in remote sensing and in the analysis of data from Martian
probes), was not, to our knowledge, used previously in celestial
mechanics for reducing FAM results. Still on the technical side,
we created new integrators to account for the Bretagnon so-
lutions of the giant planets and to simulate planetary migration
(Malhotra 1995). We believe these tools might be useful for
other studies and not only for the irregular satellites of Jovian
planets.

Several questions remain that might be the subjects of future
research. In this work we could not compute reliable capture
probabilities for the GI resonances when planetary migration
is considered, since short-period variations in the semimajor
axes of Jupiter and Saturn should also be taken into account
(Hahn & Malhotra 2000; Beaugé et al. 2002). It would also be
interesting to extend our studies to the neighborhoods of the
other Jovian satellites currently inside the Kozai resonance and
see if a web of secondary resonances (possibly involving the
Lesser Inequality, the 2:1 quasi-resonance between Neptune
and Uranus) is also present for the case of those Neptunian
satellites in the Kozai resonance (Holman et al. 2004). We hope
that this work might have opened interesting new prospects for
the study of origins and stability of irregular satellites in the
Kozai resonance.

We are grateful to Thomas Loredo, Sylvio Ferraz-Mello,
Richard Rand, Doug Hamilton, and Suniti Karunatillake for
useful comments and suggestions, and to the referees, Kim
Innanen and Ramon Brasser, for helpful hints and the careful
revision of this article. This work was supported in part by
NASA’s Planetary Geology and Geophysics program. More
information about this work is available at http://www.astro.
cornell.edu/~valerio/FFT.

APPENDIX

MEDIAN FILTER AND �2 TEST

When measuring frequencies with an FFT, the shape of
the frequency peaks can be modeled as Gaussian, but our
measurements are made at isolated points. To correct for
this we used the FMFT method with quadratic corrections of
Šidlichovský & Nesvorný (1997), which allows us to retrieve
the frequencies with the largest amplitude to a better preci-
sion. To further attenuate the noise level and emphasize large-
scale structures, we devised a median filter (Press et al. 1996;
Pitas 2000).

We took data on a running 3 ; 3 box; the value at the central
point is the median of the nine elements. Then we moved the
matrix by one element and repeated the procedure. To compute
values of � for points along the boundary of our figure, we
added two external rows and columns of points all with values
of � obtained from the average of all points in the figure. Once
all elements were computed, we calculated the average of
the percentage difference between the values of � before and
after the median filter was applied. If the percentage difference
was larger than 5%, we repeated the procedure until conver-
gence was assured. To test that our median filter was actually
removing only noise and not actual data, we devised the fol-
lowing test: We applied our median filter to one of our low-
resolution surveys until the 5% convergence criterion was
fulfilled. We then computed the difference �ij between filtered
(Fij) and raw data (Rij) and computed the standard deviation
of the difference �̄. We then generated a fictitious matrix �0

ij

of noise following a Gaussian distribution with standard de-
viation �̄ and zero mean and added this fictitious noise to
the filtered data, obtaining a matrix of �-values R0

ij. The me-
dian filter was then reapplied to these new data until conver-
gence was ensured and a new matrix F 0

ij obtained.
To compare the two distributions of filtered data Fij and F 0

ij

(data obtained after the filtration of the fictitious noise), we
devised the following scheme: We computed a �2 variable,
whose expression is given by

�2 ¼
X
i

X
j

(F 0
ij � Fij)

2

�2
ij þ �02

ij

; ðA1Þ

where �ij and �0
ij are the errors on the values of the filtered

data, intended as the difference between raw and filtered data.
The variable so computed is supposed to follow a �2-like
distribution. The problem is to determine the number of
degrees of freedom of the distribution. This is not just given
by the number (399) of data points in our low-resolution
survey, since, when taking the median, each value of � is
connected to the value of at least some of its eight neighbors.
Moreover, the process of filtering is applied several times, until
convergence is ensured, so that the number of degrees of
freedom can be substantially smaller than the number of data
points, in a way that is very difficult to estimate.
However, as a rule of thumb, a value of �2 considerably

smaller than 399 is a relatively good measure of a good fit. In
the case of our test, the value of �2 was 55, so we believe our
test should be a convincing proof of the validity of our ap-
plication of the median filter.
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Nesvorný, D., Alvarellos, J. L. A., Dones, L., & Levison, H. F. 2003, AJ, 126,
398

Pitas, I. 2000, Digital Image Processing Algorithms and Applications (New
York: Wiley)

CARRUBA ET AL.1914 Vol. 128



Press, W. H., Teukolsky, S. A., Vettering, W. T., & Flannery, B. P. 1996,
Numerical Recipes in Fortran 77 (2nd ed.; Cambridge: Cambridge Univ.
Press)

Quinn, T. R., Tremaine, S., & Duncan, M. 1991, AJ, 101, 2287
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