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a b s t r a c t

Our goal is to understand primary accretion of the first planetesimals. Some examples are seen today in
the asteroid belt, providing the parent bodies for the primitive meteorites. The primitive meteorite record
suggests that sizeable planetesimals formed over a period longer than a million years, each of which
being composed entirely of an unusual, but homogeneous, mixture of millimeter-size particles. We
sketch a scenario that might help explain how this occurred, in which primary accretion of 10–100 km
size planetesimals proceeds directly, if sporadically, from aerodynamically-sorted millimeter-size parti-
cles (generically ‘‘chondrules”). These planetesimal sizes are in general agreement with the currently
observed asteroid mass peak near 100 km diameter, which has been identified as a ‘‘fossil” property of
the pre-erosion, pre-depletion population. We extend our primary accretion theory to make predictions
for outer Solar System planetesimals, which may also have a preferred size in the 100 km diameter range.
We estimate formation rates of planetesimals and explore parameter space to assess the conditions
needed to match estimates of both asteroid and Kuiper Belt Object (KBO) formation rates. For parameters
that satisfy observed mass accretion rates of Myr-old protoplanetary nebulae, the scenario is roughly con-
sistent with not only the ‘‘fossil” sizes of the asteroids, and their estimated production rates, but also with
the observed spread in formation ages of chondrules in a given chondrite, and with a tolerably small
radial diffusive mixing during this time between formation and accretion. As previously noted, the model
naturally helps explain the peculiar size distribution of chondrules within such objects. The optimum
range of parameters, however, represents a higher gas density and fractional abundance of solids, and
a smaller difference between Keplerian and pressure-supported orbital velocities, than ‘‘canonical” mod-
els of the solar nebula. We discuss several potential explanations for these differences. The scenario also
produces 10–100 km diameter primary KBOs, and also requires an enhanced abundance of solids to
match the mass production rate estimates for KBOs (and presumably the planetesimal precursors of
the ice giants themselves). We discuss the advantages and plausibility of the scenario, outstanding issues,
and future directions of research.

Published by Elsevier Inc.
1. Introduction

Primary accretion is the stage of growth in which tiny proto-
planetary nebula dust grains grow into objects of 10–100 km size,
such as most asteroids, Kuiper Belt Objects (KBOs), and comets.
The most well known, traditional approaches to modeling primary
accretion are incremental growth by simple sticking to ever larger
sizes (Weidenschilling, 1997, 2000; Dullemond and Dominik,
2004, 2005; reviewed by Dominik et al., 2007, most recently Brauer
et al., 2008) and midplane instabilities of various types, going
back to Goldreich and Ward (1973) (cf. reviews by Cuzzi and
Weidenschilling, 2006, henceforth CW06, and more recently
Chiang and Youdin, 2009).
Inc.

.

Several important clues as to the nature of primary accretion,
which can help us assess these different hypotheses, are to be
found in primitive meteorites and asteroids (discussed in more de-
tail in Section 2.1). The most primitive chondritic meteorites dis-
play a characteristic texture: predominance of millimeter-sized,
once-molten silicate chondrules, metal grains, and refractory oxide
particles, each surrounded by fine-grained dust rims and all
embedded in a granular matrix. The size distribution of the chond-
rules in all classes of chondrite is quite narrow and nearly universal
in shape, but with a mean size distinctive of each class. At least two
entire chondrite classes are each thought to derive from only one
or two planetesimals, roughly 100 km in size and originally
composed largely of chondrules with very similar properties. This
ubiquitous and unusual texture is surely telling us something
important about primary accretion, but there is no explanation
for it at present. The Myr duration of meteorite parent body
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formation as revealed in isotopic age-dating, and the prevalence of
unmelted asteroids, suggest that primary accretion went on for a
long time (Section 2.1).

The observations suggest that primary accretion was inefficient,
and took a long time to complete (CW06; Cuzzi et al., 2008; hence-
forth CHS08; see Section 2.1). If the nebula were nonturbulent, as
required for traditional midplane instabilities to play a role, parti-
cles settle into a dense midplane layer and growth by incremental
accretion comes to completion too quickly – numerous 100 km
planetesimals and even lunar-size objects form in 105 years
(Weidenschilling, 2000, 2010), all of which would melt due to
short-lived radionuclides such as 26Al. Nebula gas turbulence can
frustrate primary accretion if simple ‘‘incremental accretion” stalls
at roughly decimeter to meter-size in turbulence, depending on
gas density (the so-called ‘‘meter-size barrier”; see Cuzzi and
Weidenschilling, 2006; Dominik et al., 2007; Brauer et al., 2008).
Moreover, recent work has identified a new ‘‘kilometer-size bar-
rier” for incremental accretion in turbulence (Ida et al., 2008). A
challenge for primary accretion in turbulence is to leapfrog not
only the meter-size barrier, but perhaps also the kilometer-size
barrier – and create 10–100 km asteroids entirely from ‘‘chond-
rules” with similar properties. It is in this sense that the first plane-
tesimals might indeed have been 10–100 km in diameter. If this
happens in a temporally extended fashion, nebula chemical and
physical properties can change slowly, perhaps helping explain
the variable chemical and isotopic properties of chondrites (e.g.
Cuzzi et al., 2005).

In previous work we have emphasized intriguing connections
between these properties of primitive meteorites and asteroids,
and the general scenario we present here. We have shown how
well-sorted, chondrule-sized mineral particles are concentrated,
by orders of magnitude, into dense zones in weak nebula turbu-
lence (Sections 2.2 and 2.3). This turbulent concentration can ex-
plain the characteristic size and size distribution of chondrules in
a natural way. We developed a cascade model of the statistics of
dense zones and their correlation with gas vorticity, which incor-
porates the effects of particle mass loading on the gas and predicts
the fractional volume of particle-rich zones which can evolve di-
rectly into objects with some physical cohesiveness. Here we de-
rive threshold conditions (combinations of the density and
lengthscale of particle clumps, and the density, pressure gradient,
and local vorticity of the gas) which allow dense clumps to proceed
to become actual planetesimals. Combination of these thresholds
with our cascade models leads to a prediction of the relative abun-
dance of primary planetesimals as a function of mass – their initial
mass functions – and even (with uncertainties) their production
rate (Sections 3.1–3.4).

In this paper we explore, in a preliminary way, primary accre-
tion initial mass functions (IMFs) at two disparate locations in
the early Solar System. These predictions may be compared with
both the known asteroid size distribution (which is thought to be
a ‘‘fossil” representing the actual size of primary planetesimals),
and also with (limited) knowledge of Kuiper Belt Objects in the
30 AU region. Under different assumptions regarding nebula prop-
erties, we estimate not only the characteristic planetesimal size or
mass which results, but also the planetesimal formation rate,
which can itself be compared with crude estimates in the asteroid
and KBO regions (Section 3.4). Our IMFs are consistent with previ-
ous suggestions that ‘‘asteroids were born big” (Bottke et al., 2005;
Ida et al., 2008; Morbidelli et al., 2009a; Weidenschilling, 2009).
The scenario we envision for primary accretion, based on turbulent
concentration, might occur continuously – and inefficiently – over
an extended time, but when it does occur it is highly selective as to
constituents and bypasses the problematic meter-size range (and
even the kilometer-size range) entirely, leading directly to 10–
100 km size objects composed of aerodynamically-sorted particles.
An independent study along these lines has also been done by
Chambers (2010). A different scenario has been advanced to ex-
plain direct growth to 100 km or larger diameter bodies, starting
with meter-size bodies (Johansen et al., 2007). This alternate path-
way occurs in environments similar to that described here, and
could proceed simultaneously (see Sections 2.2 and 4 for more dis-
cussion). It will become apparent that current uncertainties in both
the observations and the theory render our scenario more of a sug-
gestive roadmap for, rather than an exhaustive explanation of, pri-
mary accretion.

2. Background

2.1. Clues from meteorites, asteroids, and KBOs

2.1.1. Meteorites
Several different isotope systems (Al–Mg and Pb–Pb primarily)

testify that the bulk of chondrites (their dominant iron–magne-
sium–silicate chondrules and matrix) was last processed in the
nebula 1–3 Myr after the formation of the oldest, highest-temper-
ature minerals (the refractory calcium–aluminum-rich inclusions
or CAIs) found in the same meteorites (Russell et al., 2006; Kita
et al., 2000, 2005). The rare, even later-forming CH and CB chon-
drites probably resulted from an entirely different process, in an
entirely different environment (Wasson and Kallemeyn, 1990; Krot
et al., 2005). Yet, some parent bodies apparently accreted and
melted nearly contemporaneously with CAIs, forming achondrites
and metal cores (Kleine et al., 2005; Markowski et al., 2007). Pri-
mary accretion thus lasted several million years, suggesting
that it was inefficient. Moreover, isotopic age-dating has recently
progressed in accuracy and quantity to the point where several
different groups find, for several different chondrite classes (carbo-
naceous and ordinary), that the formation ages of chondrules with-
in a given chondrite range over almost 1 Myr (Kita et al., 2000,
2005; Mostefaoui et al., 2002; Sugiura and Krot, 2007; Kurahashi
et al., 2008; Villeneuve et al., 2009). The nominal two-sigma error
bars on individual chondrite ages in the best of these data are
roughly 0.3–0.4 Myr, so a range of perhaps a half-million years
cannot be ruled out, but it appears from taking these results at face
value that a range as short as 103–104 years is unlikely in spite of
qualitative thinking in the past that chondrules had to be accreted
into chondrites ‘‘rapidly” after their formation. Cautionary notes
have been raised that some or all of these apparent age spreads
might be the result of mineral-specific parent body alteration pro-
cesses (e.g. Alexander, 2005; Section 7.2); it is of vital importance
to continue to make measurements of this type while addressing
questions of alteration because, as we will show, they provide
powerful constraints on models of primary accretion.

The texture of primitive chondrites is unusual, and suggests a
role for aerodynamical effects in most cases (for reviews see Scott
and Krot, 2005 or Brearley and Jones, 1998, Cuzzi, 2004 and CW06
present more discussion of the evidence for aerodynamical effects).
The sizes of silicate and metal particles in the young CH and CB
chondrites are counter-indicative of aerodynamic sorting, showing
the evidence from normal chondrites to be non-trivial. The most
primitive chondrites – especially those containing unbrecciated
‘‘primary texture” (Metzler et al., 1992; Brearley, 1993) – look like
collections of dust-rimmed chondrules and other millimeter-size
particles, directly accumulated and merely compressed and com-
pacted. Individual constituents of chondrites (chondrules in partic-
ular) have a size distribution that, while centered at different sizes
from class to class, has a not-quite-lognormal shape that appears
universal (CHPD01, Teitler et al., 2010; see Section 2.2). The H-type
ordinary chondrite class is believed to derive from a single 80–
100 km radius parent body, initially composed of a homogeneous
collection of similarly well-defined chondrules which experienced
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post-accretional heating, metamorphism, and cooling to different
degrees at different depths (Trieloff et al., 2003; Grimm et al.,
2005; Scott et al., 2010). A similar (but less clear) story can be told
for the L and LL-type ordinary chondrites (Marti and Graf, 1992;
Sprung et al., 2010). It’s reasonable to suspect that chondrite par-
ent bodies may all be large (�100 km) objects, each initially com-
posed primarily and homogeneously of chondrules (and other
associated mineral particles) with average chemical, physical, and
isotopic properties which are well-defined in any parent body,
but differ dramatically from one parent body to another. Thus, pri-
mary accretion may be inefficient, but when it operates, it is highly
selective. We return to an assessment of the situation in our con-
cluding remarks.

2.1.2. Asteroids
Most of the S-type asteroids are probably related to ordinary

(unmelted) chondrites (Binzel et al., 2002; Clark et al., 2002). This
is not to say their interiors were never heated, or even partially
melted (Elkins-Tanton and Weiss, 2009) but there are only a few
asteroid surfaces manifesting widespread and complete melting,
as on Vesta. For instance, Sunshine et al. (2004) show that in addi-
tion to Vesta and the unrelated, but similarly differentiated basaltic
object 1489 Magnaya, three other S-type family parents (17 Thetis,
847 Agnia, and 808 Merxia) have igneous surfaces. Others of this
type might yet be found. However, all objects larger than 50 km ra-
dius would melt extensively if they accreted earlier than 1.5–
2.5 Myr after CAIs, because of radiogenic heating by live 26Al
(LaTourrette and Wasserburg, 1998; Woolum and Cassen, 1999;
McSween et al., 2002; Hevey and Sanders, 2006). The combination
of few thoroughly melted asteroids and many unmelted ones, like
the spread in meteorite age dates, points to a temporally extended
primary accretion process.

The observed asteroid population shows a distinct mode in the
distribution of mass as a function of size (Fig. 1). Bottke et al.
(2005) locate the peak of the observed asteroid mass distribution
Fig. 1. A histogram indicating where the bulk of mass lies in the current asteroids. Diame
asteroid (Ceres) and ranging downwards. Diameter boundaries between bins are taken m
databases: the IRAS albedo-diameter data posted on the PDS Small Bodies node (IRAS-
ascribed to Tedesco (1989); blue diamonds), and a tabulation by Jedicke et al. (2002; gree
the mass seems to lie at around 140 km diameter. It is the conclusion of Bottke et al. (2
erosion during post-accretional collisional evolution, but must be a primordial signatur
at 100 km diameter, using cumulative distributions. They make a
case that this mass peak is not explainable by erosive processes,
and instead testifies to an initial mass function deficient in smaller
objects. Fig. 1 shows a differential presentation of the asteroid data
that suggests the mass peak may lie at 140 km diameter. For diam-
eters larger than 350 km, there are two or fewer asteroids per bin,
so the details of the distribution are highly uncertain; for compar-
ison there are about 50 asteroids in the mass bin at 140 km diam-
eter. Nevertheless, it is a fact that the asteroid belt mass is
dominated by the few largest asteroids. This is generally taken as
evidence for runaway accretion into even larger objects, of which
more than 99% have been subsequently removed by size-indepen-
dent dynamical depletion processes (Chambers, 2004). The peris-
tence of the 140 km bump testifies to the vast number of
asteroids of these sizes in the pre-depletion population; the diam-
eter at the peak is thought to be an unbiased estimate of the prim-
itive asteroid mass distribution at the time dynamical stirring and
removal began (presumably at the time the nebula gas was re-
moved and/or Jupiter formed; see Bottke et al., 2005 or Morbidelli
et al., 2009a for a discussion). Whether the actual primary bodies
needed to be just the same size as the current fossil population
(Morbidelli et al., 2009a), or a factor of 3–10 smaller in diameter,
incurring some subsequent growth before the start of the erosive
regime (Weidenschilling, 2009, 2010) remains a subject of debate.
Either way, our predictions of the IMF and other physical proper-
ties of primary bodies provide initial conditions for, and are test-
able by, models such as these.

2.1.3. Kuiper Belt Objects
The KBO size distribution, and indeed the entire KBO formation

scenario, is less well constrained. It is generally agreed that there is
a KBO ‘‘mass bump” as in the asteroid case (Fig. 1), but the modal
peak may lie anywhere between 20 and 100 km diameter based on
the same (magnitude) data, given uncertainties in the observations
and assumed albedos. Values close to the low end of this range
ter bin centers are spaced by a factor of two in mass (i.e., in D3), starting at the largest
idway between diameters at bin centers. Results are shown from several asteroid

A-FPA-3-RDR-IMPS-V6-0; red squares), a tabulation by Farinella and Davis (1992,
n triangles). Poisson statistics error bars are indicated. In this representation, most of
005) that the depletion shortward of 140 km diameter cannot be accomplished by

e.
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might be ascribed to collisional erosion, for weak objects (Kenyon
et al., 2008), but values at the high end of this range would proba-
bly represent ‘‘fossil” signatures of the primary accretion process,
as in the asteroid case (Bottke et al., 2005). KBOs come in several
dynamical classes, which have different size distributions at sizes
larger than the mass bump (Bernstein et al., 2004; Morbidelli
et al., 2009b); of these the most abundant are the ‘‘hot” and ‘‘cold”
classical objects, named for their relatively high and low eccentric-
ities and inclinations, respectively.

It is not even known for certain where the currently observed
KBOs were formed. Traditional incremental accretion models form
them in place (Stern and Colwell, 1997; Kenyon and Luu, 1998).
This scenario requires a massive local source population of solids,
of which more than 99% must be subsequently removed by erosive
collisions or by dynamics. Cleanup by dynamics alone is slow, un-
less augmented by local embryo-size objects which are, as in the
asteroid belt, subsequently lost themselves (Chiang et al., 2007).
Ford and Chiang (2007) explored the excitation of KBOs by local
icy embryos which were subsequently lost, with mixed results,
but detailed studies of dynamical clearing per se in this scenario
have not yet been done. Kenyon et al. (2008) believe that cleanup
by erosion (with planetesimals stirred only by Neptune) can re-
move more than 90% of the bodies by grinding and drag loss of
small particles (assuming a size distribution with plentiful 1–
10 km bodies); however, removal by erosion would be much less
efficient if planetesimals are typically ‘‘born big” as implied by
the larger end of the diameter interpretations of the observations
(Bernstein et al., 2004).

The outward dynamical evolution of giant planets by interac-
tions with planetesimals (Malhotra, 1995; Fernández and Ip,
1996), more recently refined into the so-called ‘‘Nice model”, has
several implications. One is that a massive indigenous population
of planetesimals outside of 30 AU would lead to greater migration
of Neptune than observed, and its existence has been questioned
on these grounds (Gomes et al., 2004). Another suggestion is that
the current crop of KBOs (of all dynamical types) may have been
formed at smaller distances – specifically between 16 and 30 AU,
and emplaced into their current locations by dynamical processes
(Gomes, 2003; Levison et al., 2008). Supportive connections have
been made between this emplacement and other related primitive
body populations (D-type and Trojan asteroids) emplaced at the
same time and in the same general way (Levison et al., 2009; Mor-
bidelli et al., 2009). In this scenario, there is no ‘‘cleanup” problem
– the mass emplaced into the current Kuiper Belt is only about 0.1%
of the mass in its 16–30 AU source region (and most nebula models
contain more than enough total mass in this region). However, the
observed ‘‘cold classical” KBO population is less eccentric than the
model results predict; also, relative to the hot population, it is four
times richer in binaries which might be easily disrupted during ex-
tended dynamical evolution from closer to the Sun (Stephens and
Noll, 2006).

Other issues regard timescales. Some in situ, incremental
growth, massive source scenarios take 10–30 Myr to build 10–
100 km radius KBOs (Kenyon, 2002; Kenyon et al., 2008), which
probably precludes any thermal alteration by short-lived radioiso-
topes such as 26Al. On the other hand, Weidenschilling (1997; his
Fig. 12) includes gas-drag augmentation of growth, and grows
10–100 km objects at 30 AU in <1 Myr; this short accretion time-
scale would seem to predict widespread melting.

McKinnon et al. (2008) note that the emerging diversity of KBO
albedos and densities (including the apparent differentiation of
Pluto and Haumea, formerly 2003EL61, and now probably Quaoar
as well (Fraser and Brown, 2009) might be hard to explain without
short-lived isotopes; yet the need to preserve amorphous ice and
supervolatiles like CO in other objects seems to preclude them.
This paradox is reminiscent of the meteoritical arguments for
drawn-out accretion over a period spanning a little longer than
the lifetime of the short-lived isotopes.

Finally, none of the current KBO incremental growth scenarios
involve nebula turbulence, which slows growth beyond a meter
or frustrates it entirely (stalling probably occurs at even smaller
sizes at these distances, as noted below), and yet it is generally
agreed that, if any part of the nebula were robustly turbulent,
the >20 AU region would be (see next subsection). Even if the me-
ter-(or smaller) size barrier could be overcome in a turbulent envi-
ronment at 30 AU, Ida et al. (2008) have shown that expected
levels of turbulence may excite random velocities that render the
entire region erosive for 1–10 km sized objects. No detailed models
have been run for growth of planetesimals in the 16–30 AU source
region, with or without turbulence, but at least without turbu-
lence, timescales would probably be faster than in the traditional
in situ models (Weidenschilling, 1997; Kenyon, 2002; Kenyon
et al., 2008) because of higher solids densities and shorter
timescales.

As in the asteroid belt region, it is plausible that a primary
accretion scenario in which large planetesimals are created sporad-
ically, over this period of time, and perhaps with a different effi-
ciency than incremental growth models, might help resolve some
of these KBO puzzles. In this paper we will make representative
calculations at 30 AU, assuming the primordial KBO mass needed
between 16 and 30 AU was about 40M�. Future refinements of this
preliminary study are discussed in Section 3.4.2.

2.2. Turbulence and particle–gas interactions

While the ultimate cause and intensity of nebula turbulence re-
main subjects of debate on theoretical grounds (Stone et al., 2000;
Fleming and Stone, 2003; Johnson and Gammie, 2005; Turner et al.,
2007), observational arguments suggest it was indeed present at
interesting levels throughout the primary accretion stage (Dulle-
mond and Dominik, 2004, 2005; Dominik et al., 2007). The most
generally accepted (although perhaps not the only) way to drive
nebula turbulence is the magnetorotational instability (MRI), in
which the turbulent intensity is considerably higher in the dilute
gas of the outer (and upper) nebula than in the terrestrial planet
region (Turner and Sano, 2008). In contrast to the original idea of
a ‘‘dead zone” near the nebula midplane (Gammie, 1996), Turner
and Sano (2008) dub the midplane region the ‘‘undead zone” be-
cause it can be excited in as-yet poorly understood ways by strong
turbulence in the rarified layers at high altitudes. Moreover, even
without considering MHD turbulence, other possibilities remain
open (cf. CW06). Here we assume weak, but widespread turbulence
throughout the asteroid formation region.

Turbulence is an essentially lossless cascade of energy from
large, slowly rotating eddies with lengthscale L and velocity VL,
which are forced by (currently unknown) nebula-scale processes,
through smaller and smaller scales of size l, having correspond-
ingly shorter eddy timescales te(l), to some minimum lengthscale
g, called the Kolmogorov scale, where molecular viscosity mm can
dissipate the macroscopic gas motions and turbulence ceases. We
characterize the intensity of turbulence by the parameter a which
sets the disk turbulent viscosity mT = LVL � acH, where c is the gas
sound speed, H is the nebula vertical scale height, L = Ha1/2,
and VL = ca1/2. Then the turbulent Reynolds number Re =
(L/g)4/3 = acH/mm. A typical T Tauri-like nebula with mass accretion
rate _M � a few � 10�8 M�/year, channeling 2–3% of its accretional
energy into turbulence, would have a � 10�4–10�3 or Re = 107–108

at 3 AU (Cuzzi et al., 2001; henceforth CHPD01; also CW06). One
may distinguish between turbulent viscosity and turbulent diffusiv-
ity (Prinn, 1990): the former is problematic in, for instance, convec-
tive turbulence (Ryu and Goodman, 1992) but the latter is robust in
turbulence of all kinds, and it is the latter that drives our primary



Table 1
Symbols, parameters, and functions used in this paper.

Symbol Definition Equation or section

l, v(l), te(l), x(l) Eddy scale, velocity, lifetime, and frequency Section 2.2
L, VL, XL Largest eddy scale, velocity, and frequency Section 2.2
g, tg Kolmogorov (smallest) scale and lifetime Section 2.2
a, X, VK = aX Distance from Sun, orbital frequency, Kepler velocity Section 2.2
H, c, qg Gas vertical scale height, sound speed, and density Section 2.2
Re Reynolds number Section 2.2
a, mT Kinematic viscosity mt = acH Section 2.2
ts Particle stopping time Eq. (1)
qp Local mass density in particles Section 2.3
U Local mass loading factor = qp/qg Section 2.3
S Normalized gas enstrophy x2(l)/hx2(l)i Section 2.3
N Cascade level corresponding to lengthscale l Eq. (2)
m, p(m) Cascade multiplier and its PDF Section 2.3
P(U,S) Joint PDF of mass loading and enstrophy Section 2.3
P* P(U,S) at the peak of an IMF Section 3.3
Pgoal Value of P* needed to create _Mpa Eqs. (10)–(15)

tpa Conversion timescale of mass into planetesimals Section 3.3.1
U*, N* Values of U, N at P* Section 3.3
_M Mass accretion rate of gas Section 3.3.1
_Mpa Mass accretion rate of planetesimals Eq. (9)

A, Ao Actual and canonical solids abundance relative to gas Section 3.3
tG Dynamical collapse time of a dense clump Eq. (3)
tsed Sedimentation time of a dense clump Eq. (4)
WeG; We�G Gravitational Weber number and its critical value Section 3.1
b Pressure gradient parameter Section 3.2
r(a), qg(a), H(a), b(a) Radially dependent nebula properties Eq. (5)
ao Reference distance from Sun (2.5 AU) Section 3.2
qR Roche density Section 3.2.1
U1, U2, Smin Thresholds for primary accretion Eqs. (6)–(8)
FV, Fp, Ft(>T) Volume, particle, and time fractions exceeding threshold T Section 3.5.1
tenc Particle encounter time with planetesimal-forming clump Eq. (17)
Da Radial diffusion (mixing) extent in tenc Section 3.5.1
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accretion scenario. A significant nebula turbulent diffusivity can
also help explain the persistence of ancient, refractory inclusions
in chondrites (Cuzzi and Hogan, 2003; Cuzzi et al., 2005) and the
abundance of crystalline, moderate volatility silicates in the STAR-
DUST sample (Ciesla, 2009; cf. also Bockelèe-Morvan et al., 2002).
That is, nebula turbulence can mix material radially by significant
distances over time.

In most cases of realistic, high-Re turbulence, the Kolmogorov
energy spectrum is a good approximation, where for a wide range
of lengthscales g < l < L, the turbulent kinetic energy density E(l) is
given by the inertial range expression EðlÞ ¼ V2

L=2L
� �

ðl=LÞ�1=3. The
eddy frequencies then scale as x(l) = 1/te(l) = v(l)/l = (2l E(l))1/2/
l = XL(l/L)�2/3, where v(l) is the velocity of an eddy of size l, and
the large eddy frequency XL is usually identified as the local orbit
frequency X (CHPD01, Johansen et al., 2007). These properties tend
to be independent of the forcing mechanism and even of the Rey-
nolds number of the turbulence. Even if the initial forcing is
anisotropic (as perhaps for MRI turbulence), smaller eddies be-
come more isotropic as the 3D nonlinear cascade proceeds (Kato
and Yoshizawa, 1997). High Re, inertial range turbulence is suffi-
ciently scale-free (Falkovich and Sreenivasan, 2006) that using
statistical and spectral properties from limited inertial ranges to
characterize more extensive ones (those at higher Re) is an
appealing approach. We make extensive practical use of this
‘‘cascade” property, as described in Section 2.3. We note here for
future use in Section 3.3.1 that the Kolmogorov eddy timescale
tg = 1/(XL(L/g)2/3) = 1/(XRe1/2).

2.2.1. Particle–gas interactions
Particle interactions with the gas are characterized by the par-

ticle stopping time ts which, for particles of interest here, is defined
by the Epstein drag law:

ts ¼ rqs=cqg ; ð1Þ
where r and qs are particle radius and internal density, and c and qg

are the gas sound speed and density (see CW06 for more
discussion).

Particles interact with the gas, turbulent or not, within their
stopping time and acquire inertial space (absolute) and random
(relative) velocities accordingly. The relative velocities between
particles determine the outcome of their collisions (sticking, ero-
sion, or breakup), and the inertial space velocities determine the
degree to which they diffuse radially and vertically, thus control-
ling their settling to the midplane (see e.g. Dubrulle et al., 1995;
Weidenschilling, 1997; Ormel et al., 2008; Brauer et al., 2008). In
the dense midplane layers of centimeter–meter size particles
which can form in nonturbulent nebulae, the local gas is driven to
near-Keplerian speeds and relative velocities between particles re-
main low enough for continued growth to planetesimal size to oc-
cur very rapidly, with or without the help of various midplane
instabilities, on timescales of 103–105 years (Cuzzi et al., 1993;
Weidenschilling, 1997, 2000; Youdin and Goodman, 2005). This
is actually problematic in view of the extended formation epoch
of primitive bodies discussed above – the process may go to com-
pletion too rapidly (Section 2.1; CW06).

Even weak turbulence, however, frustrates growth at some lim-
iting size which depends on the local gas density (Dominik et al.,
2007). As particles grow they become more vulnerable to mutual
destruction, because their increasing stopping time couples them
to eddies of increasing size and velocity. In turbulence this cou-
pling is captured by the Stokes number St = tsx, where x can rep-
resent the eddy frequency on any scale – commonly either the
large eddy scale L(XL �X) or the Kolmogorov scale g. Particles
with ts comparable to the lifetime of the largest eddies (tsX � 1)
achieve the highest velocities VL = a1/2c. For a � 10�4, such parti-
cles collide at relative velocities Vrel � VL � 103 cm s�1 – which
are probably disruptive (Stewart and Leinhardt, 2009; Carballido
et al., 2010). For a range of nebula properties, particles in the
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decimeter–meter radius range have this property (see CW06, Fig. 1,
or Ormel et al., 2008) and this problem is commonly referred to as
part of the ‘‘meter-size barrier”. However Brauer et al. (2008), who
assume a relatively low gas density, see growth frustrated at an
even smaller size because the lower gas density leads to longer
ts. Recent lab work is challenging some of the sticking assumptions
of prior years at even lower velocities (Güttler et al., 2010); models
using these new results even suggest that a ‘‘bouncing barrier”
might preclude growth beyond objects having masses not much
larger than those of chondrule precursors (Zsom et al., 2010) –
again, depending on nebula properties. Obtaining and retaining ob-
jects with tsX � 1 is perhaps the major issue in the primary accre-
tion scenario of Johansen et al. (2007), which relies on an
abundance of such particles in moderate-intensity turbulence be-
cause they drift rapidly into high-pressure ridges to become con-
centrated. Progress in this area will be interesting to follow.
Meanwhile, we focus on a different accretion pathway, that also re-
lies on turbulence but acts on particles much smaller than a meter,
which are excited to small relative (collision) velocities well below
the disruption threshold (Cuzzi and Hogan, 2003; Ormel and Cuzzi,
2007), and have sizes directly relevant to meteorites.

2.3. Turbulent concentration and the cascade model

Small particles diffuse in turbulence, but the trajectories of par-
ticles of a certain well-defined aerodynamic stopping time avoid
fluid zones of high vorticity and converge in zones of low vorticity.
Here, concentration factors C � qp=qp may be	1, where qp and qp

are the local and nebula-averaged particle mass density, respec-
tively. We define the local mass loading U � qp/qg, where U can
thus also be 	1. The maximally concentrated particles have a
stopping time ts equal to the overturn time tg of the smallest eddies
(which have size g, the Kolmogorov scale). Two ‘‘fingerprints” of
this turbulent concentration (TC) seem evident in the meteorite re-
cord. The typical chondrule size (crudely, millimeter–diameter) is
naturally explained by TC merely by requiring ts = tg (CHPD01).
An equally compelling fingerprint is the very characteristic chon-
drule size distribution, which is very similar across meteorite
groups when scaled to the mean size, and is an excellent fit to
the distribution predicted by TC (CHPD01). It has recently been
shown that the chondrule size distribution is statistically distinct
from a lognormal distribution; more data and analyses are needed
to similarly assess the TC distribution (Teitler et al., 2010). It should
be noted that, in the outer nebula where gas densities are lower
and turbulent intensities plausibly larger, much smaller solid
grains, or, more likely, porous aggregates of grains, such as seen
in cometary IDPs, become the preferred candidates for TC rather
than chondrules, for which ts would be too large (CHPD01; see
their Section 3 and Fig. 1). Of course, it would be nearly impossible
to extract ‘‘fingerprints” of the process in, for instance, returned
KBO samples, after porous aggregates had become compacted in
a parent body.

2.3.1. Cascade model
The spatial distribution of U = qp/qg is determined only statisti-

cally, and must be studied with Probability Distribution Functions
(PDFs) which depend on the nebula Reynolds number and the spa-
tial scales of interest (CHPD01). Because the nebula Re is far higher
than achievable with current 3D fluid models, we have developed
and employed a ‘‘cascade model” which, while not reproducing the
physical structure of turbulence (vortex tubes and the like), has
been shown to reproduce the PDFs of a number of attributes of
turbulence (Meneveau and Sreenivasan, 1991; Sreenivasan and
Stolovitsky, 1995). This model was described in detail by Hogan
and Cuzzi (2007), and summarized by CHS08, so will be even more
briefly sketched here.
In turbulence, a number of properties (energy, velocity, vortici-
ty, and particle abundance) can be thought of as being partitioned
unequally and losslessly into sub-elements of eddies as they bifur-
cate. The partitioning fractions at each bifurcation are taken as m
and 1 �m, where the ‘‘multipliers” m are drawn from a PDF p(m)
which is generally independent of eddy scale throughout the tur-
bulent inertial range (Meneveau and Sreenivasan, 1991; Juneja
et al., 1994; Sreenivasan and Stolovitsky, 1995; see however, Bec
et al. (2007) where some evidence is presented for scale-depen-
dence in the context of preferential concentration). We determine
the PDFs of these multipliers p(m) from our highest Re 3D models,
which still cover only a limited range of eddy scales or bifurcation
levels (Hogan and Cuzzi, 2007). Each bifurcation is thought of as a
level in a cascade; in the cascade model, we extend the multiplier
process to even deeper levels (which one can think of as the smal-
ler eddy scales achieved at higher Re). Unless m = 0.5, repeated
application of asymmetrical partition fractions (m,1 �m) con-
stantly creates more extreme values (higher and lower) of all quan-
tities as the number of levels increases; this is referred to as
intermittency – the local value becomes not more well-defined,
but more highly variable at smaller scales (see the readable intro-
duction by Meneveau and Sreenivasan, 1991). For a cube, three
orthogonal 1D bifurcations, or levels, are needed to generate eight
subvolumes of linear size lj+1 = lj/2, and thus Re3/4 = L/g = 2N/3

= 10log2 
 N/3 � 10N/10, where N is the total number of levels in the
cascade. The general cascade relation giving the lengthscale associ-
ated with a given cascade level N, applied to a nebula situation
with a large eddy scale L, is thus

l ¼ 2�N=3L ¼ 2�N=3Ha1=2: ð2Þ

Cascade models can achieve much higher Re than Direct
Numerical Simulations (DNS); to match our full 3D DNS simula-
tions at Re = 2000, the cascade model needs only about 15 levels,
taking about 10 cpu h (for 1024 realizations) compared to over
90,000 cpu h to converge a single full 3D simulation.

Our particle–gas cascade model (Hogan and Cuzzi, 2007) simul-
taneously treats U and local enstrophy S = x2(l), where x(l) is a
vorticity on lengthscale l, using two distinct sets of multipliers,
and allows for the observed spatial anticorrelation of U and S on
a statistical basis. The results of these cascades are binned into a
second kind of (2D) PDF P(U,S). Examples are shown in Fig. 2.
The meaning of P(U,S) is volume fraction (volume per unit nebula
volume) having a particular combination of particle mass loading
factor U and relative enstrophy S = x2(l)/hx2(l)i, where hx2(l)i is
the average enstrophy at scale size l. P(U,S) is given per unit
log10(U), per unit log10(S) and differs slightly in meaning from
expressions in Hogan and Cuzzi (2007; see Appendix A). P(U,S) is
a function of level N in the cascade, because going to deeper levels
(smaller scales l) always enhances the variance of its properties
(Meneveau and Sreenivasan, 1991; Fig. 2). The two-dimensional
nature of P(U,S) is also essential; we will show that the threshold
conditions allowing planetesimal formation depend on both U and
S, as well as level N (Section 3.2).

As the particle mass density increases relative to the gas mass
density, it affects the physics of turbulent concentration. Hogan
and Cuzzi (2007) showed how particle mass loading affects the
cascade; multipliers for mass loading U and enstrophy S are shown
to depend on the local mass loading itself. As mass loading in-
creases towards U � 100, multiplier PDFs p(m) narrow towards a
delta-function at m = 0.5, implying an equal probability of parti-
tioning and no further trend to intermittency (see the discussion
in CHS08 or Hogan and Cuzzi, 2007). In this situation, there can
be no further increase of U as the cascade level increases, and U
saturates near 100. The reason for this is not completely under-
stood, but it is probably due to a combination of inertial effects
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Fig. 2. The PDFs P(U,S) for four different values of Re, computed from 3D direct
numerical simulations (solid contours) are compared with cascade model predic-
tions for the appropriate number of levels (dashed lines; N = 9, 12, 15, and 18
respectively, corresponding to the various values of Re). Note that, as Re and N
increase (from panel (a) to (d)) the variance of both U and S increases (more
extreme values of both are seen). Mass loading has begun to affect the PDFs at the
higher U values and deeper cascades plotted. Figure from Hogan and Cuzzi (2007).
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(conservation of kinetic energy) and dissipation of turbulent ki-
netic energy (which may be smaller than in terrestrial experiments
because of the tighter coupling of the particles to the gas in our re-
gime). The mass-loaded cascade models of Hogan and Cuzzi (2007)
showed good agreement with actual 3D two-phase, mass-loaded,
DNS results (Fig. 2).

An important property of the cascade models is that the cascade
level N can be related to the corresponding nebula lengthscale l, for
some given nebula a (Eq. (2) above), and we can thus calculate the
mass of the planetesimal which forms from a given volume of
material at each level. In Section 3 we will show how the cascade
model, combined with certain thresholds for the stability of dense
clumps, leads to the primary mass distribution function, or IMF, of
planetesimals. The results noted in Section 3.1 (see also CHS08)
point to spatial scales of interest which are 103–104 times larger
than the Kolmogorov scale g emphasized by CHPD01; that is, be-
a

Fig. 3. A closer look at how the IMF is determined from the PDFs P(U,S) and the thresho
contours show the cascade model results for (the log of) fractional volume P(U,S), runnin
larger N. This cascade refers to a case with A = 10Ao. Also shown for the same two lev
Section 3.2). Note that, as the contours expand with increasing N, the thresholds recede u
value of P(U,S) in the region of (U,S) that exceeds all three thresholds, as a function of ca
the same cases in the left panel. The curve traced out as N varies gives the primary accreti
in the right panel can be associated with the case qgo = 3 � 10�9, a = 10�4, bo = 10�4 (Fig
cause of the role of mass loading, we no longer believe the theoret-
ically high concentrations of CHPD01 are achievable at small scales,
and thus, for reasons discussed in Section 3.2.3, lengthscales as
small as g also become less relevant. There are fewer cascade sam-
ples in shallower cascades – larger l means lower N and the num-
ber of samples is about 2N for a cascade with N levels or
bifurcations. Thus, we needed to run many cases to obtain the
proper statistics to explore the low-P ranges of (U,S) that exceeded
our newly defined thresholds (Section 3.2) and were capable of
becoming planetesimals. We ran cascade models for a period of
several months on NASA’s HEC Altix and Origins computers at
Ames, ultimately running 103, 106, and 107 cases at 24, 20, and
15 levels to build up statistics such as shown in Fig. 3 (next
section).

3. Determination of initial mass functions

We first review how the self-gravity of a clump enters, which is
more subtle than usually believed. We then derive three different
thresholds on different combinations of clump density and size,
and local vorticity, that determine which dense clumps can be-
come primary sandpile planetesimals in a turbulent nebula
environment.

3.1. The role of self-gravity

Gravitational instability (GI) or inexorable collapse on a dynam-
ical timescale

tG ¼ ð4GUqgÞ
�1=2

; ð3Þ

is a well-used tool in the cosmogonist’s toolbox, but we have found
that the traditional concept of GI is not appropriate for small parti-
cles which have stopping times ts much less than dynamical times
tG. CHS08 recently rediscovered numerically a result originally ob-
tained analytically by Sekiya (1983), and since apparently forgot-
ten: that gas pressure stabilizes dense clumps of particles against
traditional gravitational instability on dynamical timescales (GI).
In the regime where particle–gas coupling is strong, particles which
begin to collapse under their self-gravity drag and compress the en-
trained gas, producing a radial gas density and pressure gradient,
which in turn prevents the gas and tightly coupled particles from
Points at Different N

N=14

N=11

b

lds for primary accretion (Sections 3.2 and 3.3; see also Fig. 2 and Section 2.3). Left:
g from 10�1 to 10�10, at two different cascade levels N; the blue contours are for the
els are the thresholds U1 = USek (diagonal), U2 (horizontal), and Smin (vertical; see
p and to the left. Right: the curve in the right panel (Section 3.3) plots the maximum
lculated diameter D, with one point for each value of N; red and blue points refer to
on IMF, which has a peak at some N = N*, defining P* and the associated U*. The curve
. 4b); as noted in Section 3.4, these values differ from canonical values.
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undergoing GI until the particle mass loading is 103 times larger
than the traditional GI criterion. Sekiya (1983) called the mode of
particles and entrained gas that arises under these conditions, ordi-
narily assumed for traditional GI, a 3D ‘‘incompressible mode” of
instability. Within such blobs, Sekiya suggested and CHS08 showed
that particles of radius r can only sediment slowly inwards at their
terminal velocities, on the timescale

tsed ¼ 1=4GUqgts ¼ c=4GUrqs; ð4Þ

on the order of 102–103 orbit periods for typical chondrules and
U = 100 � 10.

CHS08 explored the ability of such dense clumps to resist dis-
ruptive forces for a time on the order of tsed. As a clump settles ver-
tically towards the midplane under the vertical component of solar
gravity, or orbits at a velocity near Keplerian (VK), it incurs a ram
pressure from the nebula gas. In the latter case the headwind arises
because the gas, being pressure-supported, orbits more slowly
than Keplerian at a speed of (1 � b)VK, where b � 10�3 (see next
section; Weidenschilling, 1997; Nakagawa et al., 1986; CHS08).
Conservatively assuming each clump moves as a Keplerian object,
the mean settling speed Vz for a clump formed at altitude z above
the midplane is Vz � (z/a)VK � (z/H)b1/2VK since b � (H/a)2. Then
requiring the vertical headwind be smaller than the azimuthal
headwind implies z/H < b1/2. Within a vertical distance Hb1/2 of
the midplane, the vertical settling velocities are small compared
to the orbital velocity difference between the pressure-supported
gas, and the azimuthal ram pressure on a strengthless Keplerian
clump dominates all other disruptive forces (CHS08). In Sec-
tion 3.3.1, we will restrict the volume in which planetesimals can
form to this near-midplane region.

CHS08 developed a toy model based on an analogy with the
Weber number We in the familiar raindrop problem, where We is
the ratio of surface tension to ram pressure forces acting on a fluid
droplet moving at velocity DV relative to a less dense fluid. They
defined a ‘‘gravitational Weber number” WeG which balances the
ram pressure force per unit area with the self gravitational force
per unit area of a strengthless clump of initial diameter l and parti-
cle density qp. The premise was that certain combinations of diam-
eter l and particle mass density qp = Uqg would stabilize a clump
against being disrupted by a headwind of magnitude DV = bVK.
CHS08 ran a range of numerical models of clumps experiencing a
steady nebula headwind from the more slowly orbiting gas, to val-
idate the toy model, and determined that stability was indeed
achieved for WeG greater than some critical value We�G of order
unity. Viscous losses of material around the periphery of their
numerical clumps limited their numerical runs, but such large vis-
cous erosion is an artifact of the numerics and would not be pres-
ent in the actual nebula case. They noted that the combination of
parameters required for stability of a dense clump implied a sub-
stantial size for the ensuing sandpile (10–100 km radius), and
pointed out the similarity of this size to the ‘‘fossil asteroid belt”
modal size of Bottke et al. (2005). Below we show simplistically,
but quantitatively, how a combination of dense clump stability
thresholds may determine the IMF of primary planetesimals.
3.2. Thresholds for primary accretion in (S,U) space

Our prediction of primary object IMFs is based on mapping
three different kinds of threshold onto the cascade probability con-
tours (Figs. 2 and 3). These are not thresholds at which any sort of
traditional ‘‘fast” instability occurs (Section 3.1) – rather they are
thresholds which allow dense particle clumps to avoid ram pres-
sure disruption by the nebula gas for the long time (tsed � 102–
103 orbits) required for the particles in them to sediment into their
mutual center, creating a sandpile planetesimal. The key step in
deriving planetesimal IMFs is connecting the thresholds derived
below (functions of lengthscale l) to the cascade model PDFs (func-
tions of level N), which we do using the cascade relation given in
Eq. (2). In the following sections we incorporate simple scaling of
our criteria with distance a from the Sun, based on powerlaw
approximations for the nebula gas surface mass density r(a) =
ro(a/ao)�p and, to a less important extent, mean temperature
T(a) = To(a/ao)�q. The combination of radial density and tempera-
ture gradients leads to a generally outward radial pressure gradi-
ent dP/da which, normalized by the gravitational coriolis force, is
specified by the nondimensional parameter b = (dP/da)/(2qgaX2)
(previous section, Weidenschilling (1997; Nakagawa et al., 1986;
possible complications are discussed in Section 3.4). Then, follow-
ing Cuzzi et al. (1993, Eqs. (54)–(59)):

rðaÞ ¼ 2HðaÞqgðaÞ; ð5Þ
qgðaÞ ¼ qgðaoÞða=aoÞ�ð2p�qþ3Þ=2 � qgðaoÞða=aoÞ�ðpþ3=2Þ

;

HðaÞ ¼ HðaoÞða=aoÞð3�qÞ=2 � HðaoÞða=aoÞ3=2
;

bðaÞ ¼ bðaoÞða=aoÞ1�q
;

where the q-dependence is weak for q � 1/2 and ignored for sim-
plicity except in b; it can be easily allowed in more detailed studies.
We also adopt X(a) = X(ao)(a/ao)�3/2, and let Xo, bo, Ho, qgo = X(ao),
b(ao) , . . . , etc. take their nominal values at ao = 2.5 AU.

3.2.1. Threshold U1: rotation and gravitational binding
The first question most people have is, are the clumps rotating

too quickly to be bound? This threshold is determined by compar-
ing the local gravitational timescale tG (Eq. (3)) and the local eddy
timescale 1/x(l), where the local eddy frequency x(l) is treated as
a vorticity. This threshold dominates when the local vorticity ex-
ceeds the global value (see Section 3.2.2). Requiring tG < 1/x(l)
(Toomre, 1964; Goldreich and Ward, 1973) is conservative here be-
cause eddies do not truly ‘‘rotate” (many times) with timescale 1/
x(l); rather, 1/x(l) is their existence lifetime before bifurcating.
Even though the dense zones of small particles of interest here can-
not collapse on the timescale tG (CHS08; Section 3.1), they can be-
come bound entities based on a criterion close to this (Sekiya,
1983). Then tG = (4GUqg)�1/2 < 1/x(l) or U > x2(l)/4Gqg determines
our first threshold U1. To express U1 in terms of S = x2(l)/hx2(l)i
we use the inertial range mean enstrophy on scale l; hx2ðlÞi ¼
X2

L ðL=lÞ4=3 (Section 2.2), where XL is the large eddy frequency,
generally taken to be the orbit frequency X. We then use
X2 = GM�/a3, where M� is the Sun’s mass and a is the distance
from the Sun, and also the definition of the Roche density
qR � 3 M�/4pa3 (Safronov, 1991) to get U1(S) = (qR/qg)(L/l)4/3S.
This relation is extended to arbitrary semimajor axes a using the
a-dependence of qR(a)/qg(a). Then qR/qg = K0(a/ao)p�3/2, where
K0 � ð3 M�=4pqgoa3

oÞ. We then use the cascade relation l = 2�N/3L
to express (L/l)4/3 = 24N/9. In the nebula, L = Ha1/2 is the large eddy
scale. Combining these relations leads to

U1ðS; aÞ ¼ 24N=9K0S
a
ao

� �p�3=2

: ð6Þ

Note above that U1 has no explicit a-dependence, but each N
implies a lengthscale l which does depend on a. Each threshold
U1 appears as a diagonal line in Fig. 3, colored according to its va-
lue of N.

The more refined stability analysis of Sekiya (1983) is easily
generalized to this situation. Sekiya assumes the relevant rotation
frequency is the orbital frequency X and finds that 3D incompress-
ible modes become marginally bound at 4pGqp/X2 � 10 (his Sec-
tion 4 and Fig. 3). We generalize this to 4pGqp/x2(l) = 4pGUqg/
x2(l) > 10, and follow the same logic as above, substituting
x(l)2 = hx2(l)iS = X2(L/l)4/3S = 24N/9X2S, and relating X2 to qR/qg
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as above, to obtain a threshold value USek ¼ 10
3 U1. Because even this

more sophisticated analysis is idealized itself to some degree, we
explore the implications of this factor of 10/3 as one example of
the uncertainty of the predictions in the figures and tables of Sec-
tion 3.4 below.

3.2.2. Threshold Smin: global rotation
Notice in Fig. 3 that the cascade PDFs extend to very low values

of relative enstrophy S � few � 10�4. However, on the long time-
scales tsed a clump cannot be guaranteed of remaining in fluid
zones with such low vorticity, and will experience the global rota-
tion as a minimum. We thus impose a minimum local vorticity gi-
ven by the global shear rate X. We express this in terms of S as

S ¼ x2ðlÞ=hx2ðlÞi > Smin ¼ X2=hx2ðlÞi ¼ X2=ð22N=9XLÞ2 ¼ 2�4N=9:

ð7Þ

Thresholds of Smin appear as vertical lines in Fig. 3, colored
according to N. Regions lying to their left can be disregarded as
candidates, having unrealistically low S to characterize the long
timescales involved in sedimentation to sandpiles.

3.2.3. Threshold U2: ram pressure and the gravitational Weber
number

As described in Section 3.1 and CHS08, self-gravity of a dense
clump can play the role of surface tension and stabilize a clump
against the disruptive ram pressure of the nebula headwind if

U2l > baX= 2GqgWe�G
� �1=2

(CHS08 Eq. (4)). CHS08 suggest that the

most favorable region for clump survival is within some small ver-
tical distance b1/2H of the midplane, where vertical settling of
dense clumps under solar gravity is negligible and only the azi-
muthal headwind remains (Section 3.1). The limited, coarsely grid-
ded numerical simulations in CHS08 were unable to establish a
precise value for We�G, but it appears to be of order unity, which
we adopt here; for raindrops falling in Earth’s atmosphere,
We�G ¼ 8, so refining this constant in the nebula application is wor-
thy of more attention. As above we substitute X2 = GM�/a3, and,
closely approximating the definition of qR as M�/(4a3), obtain

U2ðaÞl ¼ bað2qR=qgWe�GÞ
1=2. Then using qR/qg from Section 3.2.1,

l = Ha1/22�N/3 from the cascade relation, and scaling a/H and b with
a as above, we obtain in a straightforward way

U2ðaÞ ¼ 2N=3 boao

Ho

� �
2K0

aWe�G

� �1=2 a
ao

� �ðp�3=2Þ=2

; ð8Þ

where K0 is defined in Section 3.2.1 and again we retain the N-
dependence. Note that U2 is not a function of S, and thus appears
as a horizontal line in Fig. 3 for each value of N, but is an explicit
function of a because of the l factor in the threshold equation for
U2l (CHS08 Eq. (4), and above). CHS08 discuss why other possible
gas effects, such as turbulent pressure fluctuations, are negligible
compared to simple ram pressure.

3.3. Derivation of the initial mass functions

The two most important things about an IMF are: (a) the shape
of the mass distribution P(M), in particular its modal value if any,
and (b) its absolute value, giving the rate at which primary plane-
tesimals of those masses are created. Our cascade model is the key
to both. The cascade model PDFs P(U,S) (Section 2.3) refer to scale
l = 2�N/3L, where for the nebula L � Ha1/2 is the largest eddy diam-
eter. Thus the cascade model provides us with the volume density
(the occurrence probability or volume per unit volume) of zones
having a particular combination of density and vorticity on a spe-
cific nebula lengthscale l, and allows us to calculate both a mass
associated with each bin (given by M = Uqgl3), and the abundance
of these bins at any time (given by P(U,S)). As we increase the cas-
cade level N, we sample statistics at smaller l, where the PDF is
more intermittent and the probability contours expand, limited
by the constraint of saturation near U � 100 (Section 2.3; Hogan
and Cuzzi, 2007; Fig. 3). The values of P(U,S) depend explicitly
on N and the initial value of the total solid/gas ratio A, with canon-
ical value Ao which we take to be 10�2 everywhere for reference,
comprising particles with sizes suitable for turbulent concentra-
tion (ts � tg; Section 2.2).

The thresholds U1, U2, and Smin (Eqs. (6)–(8)) also increase with
N (a result of their l-dependence). For any N, the most common
planetesimal mass is that corresponding to the clump (of size l)
with the highest value of P(U,S) = PN lying along the threshold lines
U1, U2, for S > Smin. As N changes, the contours and thresholds
evolve at different rates; thus PN varies with N and there is typically
some maximum PN = P* at some value of N = N*. This defines the
peak of the distribution at N*, U*, P*. Because there is also a mass
M associated with any U, l(N), and qg, PN(M) provides the complete
IMF and has a modal mass M(U*).

This situation is best perceived in a sequence of snapshots at
different N, which are difficult to present in the format of a printed
page (see online supporting material or http://spacescience.arc.
nasa.gov/media/staff/jeff-cuzzi/IMF.ppt). We attempt to present it
in Fig. 3 using two different colors for the contours and thresholds
associated with two different values of N. The planetesimal diam-
eters plotted in the right panel are derived from M = U*qgl3, assum-
ing a planetesimal density of 2.0 g cm�3.

To summarize, the placement of the thresholds U1, U2, and Smin

depends on N and the physical parameters of the nebula model as-
sumed: the nebula a, the local gas density qg or surface density r,
and the headwind parameter b. The placement of the contours
P(U,S) depends on N and the local solid/gas ratio A, which can be en-
hanced over cosmic abundance Ao (here assumed to be 0.01). Pri-
mary IMFs vary accordingly. Extension of the theory to 30 AU is
straightforward (Sections 3.2 and 3.3.1), depending on the radial
dependence of r(a) and b(a), as determined by powerlaw relation-
ships plus whatever (ill-constrained) radial variation there might
be of turbulent intensity a. In Section 3.4 we show preliminary IMFs
at 2.5 and 30 AU, for a number of nebula parameters. Before describ-
ing these, we outline our approach to constraining the vertical com-
ponent of the IMFs – the actual creation rates as functions of size.

3.3.1. Planetesimal creation rate
A successful model must reproduce estimates of the mass orig-

inally created in primordial planetesimals in some region, over the
time available; this is the average primary accretion rate _Mpa. We
will compare _Mpa from our models with expectations for the Solar
System. Primary accretion occurs when clumps having local den-
sity of solids Uqg, occupying some small volume fraction of the
nebula P(U,S), become stable against disruption and form a sand-
pile planetesimal in their sedimentation timescale tsed = 1/4GUqgts

(Section 3.1; CHS08). We can assume primary accretion is domi-
nated by a region near the peak of each modeled distribution (a
more refined approach is described in Appendix A). Then we re-
quire the set of parameters (P*,U*,N*) at each peak or modal value
to satisfy a stipulated primary accretion rate _Mpa and solve for the
value of P* which we refer to as the ‘‘goal” value Pgoal. We can then
normalize the various distribution peak values P* by the corre-
sponding Pgoal for the same parameter set, to assess how well the
parameter set achieves the stipulated _Mpa. The available nebula
volume between semimajor axes a1 and a2 is p a2

2 � a2
1

� �

 2Hb1=2,

where only some vertical fraction b1/2 may be suitable for this pro-
cess (Section 3.1). Thus

_Mpa ¼ ðU�qgÞP
� 2p a2

2 � a2
1

� �
Hb1=2

� �
=tpa: ð9Þ

http://spacescience.arc.nasa.gov/media/staff/jeff-cuzzi/IMF.ppt
http://spacescience.arc.nasa.gov/media/staff/jeff-cuzzi/IMF.ppt
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In Eq. (9), the numerator approximates the total amount of
mass at any instant lying in zones which exceed the various
thresholds (U1,U2,Smin) and can become planetesimals (see also
Section 3.5.1 and Appendix A). The denominator tpa is the timescale
on which primary accretion converts this mass into planetesimals.
We then solve Eq. (9) for the values of P* � Pgoal which are needed
to produce the estimated primary accretion rate as

Pgoal ¼
_Mpatpa

ð2U�qgp a2
2 � a2

1

� �
Hb1=2Þ

¼
_rpatsed

2U�qgHb1=2 ; ð10Þ

where we thereby define a primary accretion rate in terms of sur-
face density: _rpa.

In Eq. (10), for specificity and to be conservative, we adopt
numerical values of tpa = tsed for the relevant mass production time-
scale; this is not a well-defined selection but assumes that all the
physics of clump formation and dispersal, including various
dynamical and fluid timescales, is captured by the ensuing average
volume fractions P(U,S), such that the rate at which sandpile
planetesimals appear is then simply the proto-sandpile mass so de-
go
al

go
al

-4
-3
-2

Fig. 4. Initial mass functions (IMFs) at 2.5 AU. The vertical axis plots the normalized fu
(Section 2.3; right panel of Fig. 3). Peak values near unity indicate the scenario can produc
b (top left and right) assume a background enhancement of solids over cosmic abundanc
and Green: a = 10�2. Fig. 4b and c (and 5 and 6) increase our simply derived value of U1 (E
gas densities qgo refer to ao = 2.5 AU. Curves are also labeled by the headwind parame
increasing A/Ao or qgo and/or decreasing tpa or bo, leads to higher production rates. Thes
fined at any given time, divided by the time it takes them to be-
come sandpiles. Because this choice is uncertain by a large factor,
we will carry a final factor of tpa/tsed which will illustrate the sen-
sitivity of our results to the uncertainty in tpa. While studying the
results presented in the next section, the reader should keep in
mind that the value of Pgoal would be significantly smaller, and thus
the normalized IMFs in Figs. 4–6 would be considerably closer to
unity, if the timescale in the denominator of Eq. (9) were, instead
of tsed, the formation time of a clump (plausibly on the order of
tL � 1/XL or roughly the orbit time, which is a factor of 102–103

shorter than tsed). Indeed Chambers (2010) has assumed an even
smaller timescale for tpa, comparable to the (shorter) eddy time-
scale at lengthscale l� L. The question of the most appropriate
approach to estimating _Mpa is a fruitful subject for future
consideration.

Below, we will use crude estimates of _rpa at 2.5 and 30 AU to
constrain our model predictions of P(U,S). First, we rewrite Eq.
(10) in a more useable form, combining all occurrences of familiar
nebula parameters. We assume the particle stopping time for pref-
erential concentration ts, which occurs in the definition of tsed, is
go
al

nction log(P(U,S)/Pgoal) (Section 3.3.1), which peaks at the mode value P(U,S) = P*

e the expected pre-depletion mass in planetesimals in the expected time. Fig. 4a and
e of A/Ao = 10, and Fig. 4c (bottom) assumes A/Ao = 30. Blue: a = 10�4, Red: a = 10�3,
q. (6)) by a factor of 10/3 to align it with the result of Sekiya (1983). The normalizing
ter bo(ao = 2.5 AU). Roughly speaking, larger a produces larger planetesimals, and
e cases are tabulated in Tables 2–5.



Fig. 5. Initial mass functions (IMFs) at 30 AU, similar to Fig. 4; these assume different nebula radial surface gas density powerlaws r(ao)(a/ao)�p with p = 0.5, 1.0, and 1.5. The
vertical axis plots log(P(U,S)/Pgoal) (Section 3.3.1). The curves here assume normal cosmic abundance (A = Ao) and the Sekiya value of U1. The normalizing gas densities qgo

refer to 2.5 AU, and curves are also labeled by the headwind parameter bo(2.5 AU). As in Fig. 4, larger a produces larger planetesimals, and increasing qgo and/or decreasing bo

leads to higher production rates. The scant results for p = 1.5 suggest we would need to extend the cascade model to higher N (smaller l) than we have so far, to capture the
mode of the distribution, which would remain at low P*. Allowing for a smaller tpa could raise these normalized IMFs by a factor of 102–103 by decreasing Pgoal (Section 3.3.1).
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equal to the Kolmogorov eddy timescale tg which depends on neb-
ula properties (see Section 2.3):
ts ¼ tg ¼
1

XRe1=2 ¼
m1=2

m

XðacHÞ1=2 ¼
K1

XðaqgHÞ1=2 ; ð11Þ

where K1 = 5.3 � 10�5 g1/2 cm�1, and we have expressed the gas
kinematic viscosity as mm ¼ mH2 c=rH2qg , where mH2 and rH2 are
the mass and cross section of a hydrogen molecule, respectively
(Cuzzi et al., 1993). Chondrule-like particles satisfy this relationship
in the asteroid belt region, but in the outer nebula, much smaller or
less dense particles will be optimally selected (CHPD01). Then
substituting for ts we obtain

Pgoal ¼
_rpaXðaqgHÞ1=2

8GK1U
�2q2

g Hb1=2 ¼
_rpaXa1=2

8GK1U
�2q3=2

g H1=2b1=2

tpa

tsed

� �
: ð12Þ

We now scale all radially variable quantities assuming nominal
powerlaw nebula surface density and mean temperature discussed
above, and obtain
Pgoal ¼
Xo

8GK1ðboHoq3
goÞ

1=2

 !
_rpaa1=2ðaÞ

U�2

� �
a
ao

� �ð3pþq�1Þ=2 tpa

tsed

� �
:

ð13Þ

Regarding _rpa, a consensus belief is that the 2–4 AU region of
the primordial asteroid belt (prior to dynamical clearing) con-
tained planetesimals with a mass of about 2M� (Petit et al.,
2001; Chambers, 2004, and personal communication, 2009), which
isotopic age-dating suggests formed over about 2 Myr. The Kuiper
Belt is less well constrained but required perhaps 40M� in plane-
tesimals between 16 and 30 AU (Tsiganis et al., 2005; see Sections
2.1 and 3.4.2); for our scenario to be relevant this also must have
happened before the gas vanished. Standard nebula lifetimes of
about 3 Myr (Haisch et al., 2001) refer to the presence of warm
dust, probably more relevant to the asteroid belt region than the
Kuiper Belt region. Currently, the lifetime of outer nebula dust
can only be limited crudely to less than 10–30 Myr (Carpenter
et al., 2005). For simplicity here, we simply assume the same
accretionary lifetime for the outer nebula as for the inner nebula
(2 Myr); this is shorter than found by traditional incremental



Fig. 6. Same as Fig. 5; normalized IMFs at 30 AU, assuming the Sekiya-adjusted value of U1 and different surface density profiles p = 0.5, 1.0, and 1.5. These results differ from
Fig. 5 by assuming a local abundance of solids enhanced over cosmic by a factor of 10 (A = 10Ao). Normalized IMFs approach (or even exceed) unity for flatter radial
distributions, and all normalized IMFs can be increased by decreasing tpa (Section 3.3.1).
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growth models (see Section 2.1). Then _rpa ð2:5 AUÞ � 2:4�
10�14 g cm�2 s�1, and _rpa ð30 AUÞ � 10�14 g cm�2 s�1. After some
algebra, Eq. (13) becomes

Pgoal ð2:5 AUÞ � 10�5 a
10�3

� �1=2 10
U�

� �2 10�9

qgo

 !3=2
10�3

bo

 !1=2
tpa

tsed

� �
:

ð14Þ

At 30 AU the results depend on the radial scaling parameters p
and q (now embedded in K2 below); we assume q = 0.5:

Pgoal ð30 AU;pÞ¼K2ðpÞ
a

10�2

� �1=2 10
U�

� �2 10�9

qgo

 !3=2
10�3

bo

 !1=2
tpa

tsed

� �
:

ð15Þ

where K2(p) = 10�5(a/ao)(3p�0.5)/2; thus K2(0.5) = 3.6� 10�5, K2(1.0) =
2.4 � 10�4, and K2(1.5) = 1.5 � 10�3, and we have suggested (differ-
ent) plausible values of a (Sections 2.1 and 2.2) at 2.5 and 30 AU,
and a typical overall value of U*, for scaling purposes.
3.4. Results

Fig. 4 shows preliminary IMFs we have derived at 2.5 AU, for a
range of nebula parameters, based on the methods described in
Section 3.3. The modal diameters for primary planetesimals fall
within the 20–200 km range of uncertainty spanned by models
of subsequent stages of evolution leading to the observed asteroids
(Morbidelli et al., 2009a; Weidenschilling, 2009; Section 2.1 and
Fig. 1). Each IMF is normalized by the ‘‘goal” value Pgoal for the com-
bination of parameters defining each curve, calculated using Eqs.
(14) or (15). If the peak of the normalized IMF approaches unity,
it implies that the case is capable of producing enough mass in
planetesimals, in the time available, to satisfy current expectations.
The actual values of P* and Pgoal are tabulated in Tables 2–4. Clearly,
some cases are more successful than others in this regard, but it is
intriguing that the model even comes close to satisfying both of
these independent constraints at once. However, to do so, the re-
sults shown for 2.5 AU prefer a local background solid mass
enhancement over cosmic abundance A/Ao = 10 (Fig. 4a and b), or
A/Ao = 30 (Fig. 4c), and a headwind parameter b which is as much
as 10 times lower than normally assumed (b � 10�3; Nakagawa
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et al., 1986; Cuzzi et al., 1993). Enhancement of solids over canon-
ical values, and suppression of the headwind speed below canoni-
cal values, are not only important, they are connected (see below).

Comparison of Fig. 4a–c is instructive regarding the effects of
uncertainty in the models. All results are obtained applying all
three thresholds: U1, U2, and Smin. However, Fig. 4a shows results
derived assuming the simple derivation of U1 in Section 3.2.1, with
A = 10Ao. Fig. 4b shows the implications of adopting, instead, the
more refined threshold USek = (10/3)U1 (see Section 3.2.1) – the
values of P* and Pgoal (and of the resulting normalized IMFs) de-
crease, while the modal sizes shrink slightly. In Fig. 4c, we show
that increasing A/Ao by only a factor of three increases the IMF P*

values dramatically, to the point that the normalized IMFs
routinely exceed unity; thus for our assumption of tpa = tsed

(Section 3.3.1), a degree of solids enhancement in the range
A/Ao � 10–30 is apparently called for. On the other hand, the nor-
malized IMFs would increase by several orders of magnitude if
we were to adopt tpa � tL instead of tpa � tsed (see Section 3.3.1
and Chambers, 2010). In Section 3.5 we discuss the ability of these
cases to match other constraints, where tpa plays no apparent role.

3.4.1. Enhancement of local solids by radial and vertical decoupling
Suggestions that A > Ao, where Ao is the cosmic abundance, are

not new in the context of primary accretion. Growth to decime-
ter-or-meter size (but perhaps no further) may be robust in turbu-
lence (Dominik et al., 2007; Ormel et al., 2008), especially in the
outer Solar System where water ice might increase particle ‘‘stick-
iness”. This will cause large amounts of mass to migrate from the
outer Solar System to the inner Solar System much faster than
the gas evolves, elevating the relative abundance of solids signifi-
cantly (Stepinski and Valageas, 1996, 1997; Cuzzi and Zahnle,
2004; Ciesla and Cuzzi, 2006; Kornet et al., 2001). A similar process
was advocated by Youdin and Chiang (2004) in a nonturbulent
nebula without particle growth. More recent models (Zsom et al.,
2010) which account for experimental results for silicates (Güttler
et al., 2010) find growth being frustrated at even smaller sizes,
where radial drift would be much smaller – keeping material
around longer in the inner Solar System where ices are mostly ab-
sent. A complementary process is vertical settling of clumps
formed at high altitude, which brings material to lower altitudes
faster than would otherwise be the case (Wang and Maxey,
1993; Aliseda et al., 2002; Bosse et al., 2006). We are actively
studying both of these processes, and feel that a combination of
them could lead to background abundance of A/Ao � 10–30 within
z < Hb1/2, where we have suggested primary accretion operates.
Moreover, settling of solids towards the midplane can affect the
local gas orbital velocity and thus the headwind experienced by
particles (Nakagawa et al., 1986). For plausible enhancements
(A/Ao < 30) this is unlikely to lead to more than an order unity effect;
solving for the headwind velocity using equations in Nakagawa
et al. (1986), for particles with short stopping times such as those
of interest, gives a reduction in effective b by a factor 1 � qd/qg, or
0.7 for A/Ao = 30. Haghighipour and Boss (2003) showed in princi-
ple, and Johansen et al. (2007) found in realistic 2D and 3D turbu-
lent simulations, that the headwind parameter b can essentially
vanish in local pressure gradient reversals, which may be long-
lived but might only occupy a small fractional volume. Testing
these speculations with actual models is an important goal for
future work.

The 30 AU cases generally fall well below their respective goals
if A = Ao is assumed (Fig. 5), especially for the steeper radial density
distributions. However, some enhancement of solids at 30 AU is
not obviously out of the question, at least near the midplane: if
dense clumps are forming and settling, there will be some
enhancement due to this process alone, as discussed above. More-
over, for nebulae that begin with >100 AU radial extent, some
enhancement may occur due to particle growth at radii larger
than 30 AU, and subsequent inward drift, depending on the growth
rate in these rarified regions. Stepinski and Valageas (1997),
Weidenschilling (2004), and Kornet et al. (2001) find enhance-
ments of solids by factors of order unity by 0.1–1 Myr, depending
on a. On the other hand, Garaud (2007), using different assump-
tions (very low particle sticking), finds a depletion of solids at these
distances. Further studies of the growth of solids in the remote out-
er nebula are important to continue because of these discrepancies
and their implications for primary accretion. Overall, we feel it is
not implausible that some degree of enhancement of solids did in-
deed occur even at 30 AU, although probably not as substantial as
that which might have occurred at 3 AU. Because our results are so
strongly dependent on the abundance of solids (Fig. 4c), we ran the
same set of cases at 30 AU assuming A = 10Ao (Fig. 6). Indeed the
normalized IMFs now come closer to, or even exceed, unity. It does
appear that moderately steep radial nebula profiles, such as that of
the traditional minimum mass nebula (p = 1.5) are seriously chal-
lenged to match the mass production rate goals as adopted here.
Again, we note that smaller values of tpa also have the potential
to increase the normalized IMFs closer to unity by several orders
of magnitude (Section 3.3.1; Chambers, 2010). It is interesting to
note that, in Fig. 5c, the normalized IMFs actually increase with
increasing b, so for the larger values of a � 10�2 that may well ap-
ply to the outer Solar System, nominal values of b might be accept-
able (somewhat in contrast to the cases at 2.5 AU).

3.4.2. Primary accretion efficiency and its implications
It is interesting to note that, at both 2.5 and 30 AU, only a small

amount of the mass initially present actually gets accreted into
planetesimals in this scenario; that is, our accretionary process is
highly inefficient – quite distinct in this regard from the traditional
100% efficient minimum mass nebula assumption. Consider a typ-
ical p = 1 case with qgo = 10�9 g cm�3 at 2.5 AU. Say our models
achieving P* � Pgoal had A � 10Ao on average. If this is a product
of both radial and vertical settling, the solids surface mass density
might be increased by a factor of 3 over our nominal nebula models
(by, e.g., inward radial drift of particles from further out). This
would result in available mass of about 120M� in solids in the 2–
4 AU region and about 900M� in the 16–30 AU region. Then,
P* � Pgoal, or accretion of 2M� in the 2–4 AU region, means that only
�1.5% of the solids there were captured into planetesimals, and
accretion of 40M� in the 16–30 AU region means that only �4%
of the solids there were captured. The balance (that is, almost
everything) presumably escapes into the Sun (or in the case of
the outer nebula, escapes the Solar System or helps feed the inner
nebula).

There are some especially interesting implications for the Kui-
per Belt. These efficiencies, while small, are still larger than those
of traditional models of incremental accretion of the current Kuiper
Belt (e.g. Stern and Colwell, 1997; Kenyon, 2002). In these models,
tens of M� of solids initially present in the region produced only
the observed 0.01–0.1M� in KBOs – having an efficiency an order
of magnitude smaller than that derived above because of the broad
size distribution in which they are required to grow. Recent models
of subsequent dynamical depletion (during evolution of Neptune)
of the planetesimals that did form do not change this efficiency,
but just require a larger starting mass. On the other hand, perhaps
the biggest remaining problem in the ‘‘dynamical emplacement”
theory of the KBOs (Levison et al., 2008) is the cold classical popu-
lation, which has lower eccentricity, and perhaps higher binary
fraction, than might be expected from dynamical emplacement
from within 30 AU. That is to say, growing at least the cold classical
KBO population in situ, while emplacing the rest, might have some
appeal; we suggest below that this is not out of the question given
an edge in the solids density near 30 AU. These issues, and others
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related to a large initial mass in the Kuiper Belt region, are de-
scribed in Section 2.1.

As mentioned above, our primary accretion rates (and masses)
are strongly dependent on A/Ao. Comparing Figs. 5 and 6 shows
that a drop in A/Ao by a factor of 10 leads to a drop in P*/Pgoal by
a factor of about 1000. Suppose there were a factor of 10 drop, or
‘‘edge”, in the abundance of solids at around 30 AU, and all other
parameters were slowly varying (e.g., Weidenschilling, 1997;
Stepinski and Valageas, 1996, 1997). We would then expect to
form, over the 30–44 AU region, 1000 times less mass in primary
bodies than our goal value of 40M� – about 0.04M�. Indeed this
is about four times the mass of the cold classical population (Bern-
stein et al., 2004). Even if the dynamical evolution of Neptune re-
moves about 90% of originally formed planetesimals (Morbidelli,
personal communication, 2010), the scenario described in this pa-
per is only a factor of 2–3 away from forming the required �0.1M�
cold classical (primordial) population in situ. Moreover, this forma-
tion would not leave behind a massive population of other objects
that would need to be eroded away and/or cause Neptune to mi-
grate further than observed, because the bulk of the planetesimal
mass formed by this scenario ‘‘forms big” at the mode in the mass
distribution. Given the simplicity of the scenario presented here,
and its sensitivity to uncertain parameters, it seems this possibility
may be worth further thought.

In future, more detailed studies, allowance should be made for
the fact that a primary accretion mechanism designed to produce
(part or all of) the current crop of KBOs in 16–30 AU might also
need to produce the roughly equal mass in planetesimals that grew
into the cores of Uranus and Neptune, which would increase the
mass accretion rate by a factor of 2 or so; this does not strike us
as prohibitive given the observational and model uncertainties in-
volved. On the other hand, if Uranus and Neptune formed inside of
17 AU (e.g. as in Tsiganis et al., 2005) this requirement is relaxed.
Finally, there is nothing to prevent the scenario described here
from creating all the KBOs in situ between 30 and 44 AU, if the sol-
ids mass were appropriately enhanced and nebula parameters
slowly varying (at least for the p = 1 models), but the cleanup
and Neptune migration problems would remain.

3.5. Other comparisons between model predictions and observations

We have noted several times that the normalized IMFs (Figs. 4–
6) can be made to approach or exceed unity (that is, produce the
needed mass in planetesimals in the allowed time) if our assumed
value of tpa = tsed, which determines Pgoal is several orders of magni-
tude too large (see for instance, Chambers, 2010). In this section we
discuss other constraints the model can be compared with, which
are not dependent on this uncertain parameter.

3.5.1. Clump encounter times and the age spread in chondrites
As discussed in Section 2.1, recent work suggests a wide spread

in the formation times of chondrules in a given chondrite – a sig-
nificant fraction of a Myr. Some concerns remain regarding the
interpretation of these data as age differences, which will surely
be addressed as more data emerge. Here we take the age differ-
ences at face value, and explore their implications for our models.
Below we estimate how long a newly formed chondrule must wan-
der through the nebula before, along with many other chondrules
being independently formed and wandering about, entering one of
the rare, dense clumps that is destined to become a sandpile plan-
etesimal under the scenario presented here. We would expect this
timescale to approximate the half-width in the formation age
range observed in a particular chondrite, by the statistical nature
of the process. That is, a few new chondrules will accrete shortly
after their formation, most will accrete after a time tenc, and some
unlucky ones might need to wait another tenc or so to find their
parent proto-sandpile clump. We assume a fixed particle density
spatial distribution of proto-sandpile-clumps of size l and mass
density U even if the individual clumps are everchanging. A
wandering chondrule, being nearly tied to the turbulent gas,
sweeps through the frame defined by the orbiting gas (and dense
clumps) at a speed Vp roughly equal to the turbulent velocity
VL = ca1/2 (Cuzzi and Hogan, 2003). However, because the motion
of preferentially concentrated particles is not random in space
and does not sample all fluid volumes with equal probability, a
simple random-walk, particle-in-a-box encounter calculation is
inappropriate.

Instead, we use a ‘‘duty-cycle” approach similar to that de-
scribed by CHPD01 (their Section 6.2). In Appendix A we describe
some of the details involved in translating the nomenclature of
CHPD01 to that used here. CHPD01 integrate a two-dimensional
function such as our P(U,S) over S and distinguish FV(U), the frac-
tion of volume lying in zones of mass loading U, from Fp(U), the
fraction of particles lying in such zones. These are not equal be-
cause particles preferentially are found in dense zones, not ran-
domly in space. CHPD01 demonstrated that the cumulative
fraction of particles Fp(>U) lying in regions of density larger than
U is the same as the fraction of time spent by a given particle in re-
gions with density larger than U, Ft(>U). This would be true for the
differential functions Fp(U) and Ft(U) as well. We generalize here
to the two-dimensional function Fp(U,S) because we are more
carefully treating the role of enstrophy, but the same identification
will hold between Fp(U,S) and Ft(U,S), and for their cumulatives.
We also adopt a different treatment of the cumulative of Fp, as de-
scribed in Appendix A: specifically, we calculate the fraction of par-
ticles Fp(>T) lying in zones having properties anywhere within the
stable region defined by the thresholds Smin, U2, and U1(S) (see
Fig. 3; also see Appendix A for derivation of Fp(>T)). As in CHPD01
we set Fp(>T) equal to the fraction of time Ft(>T) spent by any given
particle in zones capable of becoming sandpile planetesimals. We
note that Fp(>T) is calculated at the level N defining the mode, or
maximum, in the IMF for each parameter case (Figs. 3–6), and is
thus associated with a lengthscale l.

For a wandering particle CHPD01 define tin = l/Vp as the time it
spends traversing a clump of size l, and tenc as the time between
encounters with such a clump. Setting tin = l/Vp neglects the ‘‘pelo-
ton effect” in which some (but not most) particles are seen to fol-
low a given clump for an extended period of time. Then the duty
cycle, or fraction of time spent by a particle in regions of size l
capable of becoming sandpile planetesimals can be approximated
(assuming tin� tenc) by

Ftð> TÞ ¼ tin

tenc
¼ l

Vptenc
¼ l

VLtenc
: ð16Þ

We recall that only the subset of such regions which lie within a
fraction b1/2 of the nebula’s vertical extent are candidates to be-
come sandpile planetesimals (Sections 3.1 and 3.3.1). The time
fraction spent by particles in this subset of regions is therefore
F 0tð> TÞ ¼ b1=2Ftð> TÞ. We then obtain the encounter time of a
particle with proto-sandpiles by setting tin=tenc ¼ F 0tð> TÞ ¼ b1=2Ft

ð> TÞ ¼ b1=2Fpð> TÞ, and solving for tenc:

tenc ¼
l

b1=2Fpð> TÞVp

¼ 2�N=3Ha1=2

b1=2Fpð> TÞca1=2
� 2�N=3

b1=2Fpð> TÞX
: ð17Þ

In Eq. (17) above we have used l = 2�N/3L = 2�N/3Ha1/2 and
VL = ca1/2, and Fp(>T) is evaluated at the value of N giving the peak
of the IMF. In Appendix A we note that Fp(>T) can be simply related
to the modal peak value P*. Of course, these arguments are
simplified and need to be explored in more detail statistically
and numerically. Nevertheless, the crude estimates shown for tenc

in Tables 2–5, ranging to values of a fraction of a Myr, confirm that,
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in this scenario, accretion is a drawn-out process with timescales
compatible with those observed. Recall that the observed age
dispersion half-widths in several different chondrite classes are a
few � 105 years (Section 2.1). Cuzzi et al. (2010) show that the dis-
tribution of chondrule ages in two primitive chondrites is compat-
ible with a Poisson arrival time distribution characterized by
tenc = 0.2–0.4Myr.

3.5.2. Radial diffusion and ‘‘zoning” in the asteroid belt
Tables 2–5 also show the extent of radial diffusion Da over the

timescale tenc, as normalized by semimajor axis a = 2.5 AU; a con-
stant ratio H/a = 0.05 is assumed here. The outcome of such a
random walk in cylindrical geometry is a slightly non-gaussian
profile centered on the starting position, having a half-width
Da � 1:7ðDtencÞ1=2, where D � acH is the diffusion coefficient
(Cuzzi and Hogan, 2003). Fig. 7 shows a slightly more detailed
treatment, in which the constant viscosity Green’s function for
cylindrical geometry (Cuzzi and Hogan, 2003) is used to illustrate
the diffusive spread of initial delta-functions of tracer ‘‘chondrules”
released at 2 AU and 4 AU in a nebula with a = 10�4, after periods
of 105–106 years. As indicated by the overlap of the curves in
Fig. 7, some level of discrimination can be preserved over time-
scales of a few � 105 years, but mixing is nearly complete by
1 Myr for a = 10�4. Larger a, of course, leads to more complete ra-
dial mixing, as shown in Tables 2–5. This sensitivity of the amount
of radial mixing to time, across the 0.1–1 Myr range, makes emerg-
ing developments in chondrule age-dating (both the observations
themselves and the interpretation of the results) highly relevant
(Section 2.1).

3.5.3. Nebula mass accretion rate
Tables 2–5 also show the nebula gas mass accretion rate that

would be implied by the various adopted parameters:
Table 2
Summary of all predictions for the models of Fig. 4a (relevant to 2.5 AU, and assuming the
peak, of the IMF for each case. The encounter time of a chondrule with its ultimate p
corresponding value of the normalized radial diffusion width Da/a in a time tenc (Section
(Section 3.5.3). We assumed X = 5 � 10�8, appropriate at 2.5 AU. The value of Pgoal assum

a qgo bo N* U* P*

1e�4 5e�10 1e�4 12 19.3 1.0e�8
1e�4 1e�9 1e�4 11 10.8 2.9e�7
1e�4 3e�9 1e�4 9 3.9 3.7e�5
1e�3 3e�9 1e�4 10 3.3 6.4e�5
1e�3 3e�9 5e�4 10 7.8 7.2e�6
1e�3 3e�9 1e�3 11 19.7 7.0e�8
1e�2 1e�9 1e�4 14 9.1 1.3e�6
1e�2 1e�9 5e�4 14 10.8 1.1e�6
1e�2 1e�9 1e�3 11 10.8 2.9e�7

Table 3
See Table 2 caption; this table replaces U1 of Eq. (6) by USek (Section 3.2.1), and assumes A/
the radial diffusion probably too large, to match the meteoritic constraints. Also, as shown
tsed would increase P*/Pgoal P 1 accordingly (Section 3.3.1).

a qgo bo N* U* P*

1e�4 5e�10 1e�4 15 61.0 2.0e�11
1e�4 1e�9 1e�4 15 30.6 2.1e�9
1e�4 3e�9 1e�4 14 12.5 7.4e�7
1e�3 3e�9 1e�4 15 11.1 8.6e�7
1e�3 3e�9 5e�4 12 12.4 4.0e�7
1e�3 3e�9 1e�3 11 19.7 1.3e�8
1e�2 1e�9 1e�4 19 30.7 3.5e�9
1e�2 1e�9 5e�4 18 30.6 3.3e�9
1e�2 1e�9 1e�3 15 30.6 2.1e�9
1e�2 5e�10 1e�3 15 61.0 2.0e�11
1e�2 5e�10 1e�4 19 61.2 6.5e�11
_M ¼ 3prmT ¼ 3pracH (Lin and Papaloizou, 1985). We assume
c = 105 cm s�1 and H(ao) = ao/20 = 2 � 1012 cm at ao = 2.5 AU. The
larger values of a, combined with the large values of qgo suggested
by models where P*/Pgoal P 1, produce mass accretion rates sub-
stantially larger than regarded as typical for Myr-old protoplane-
tary disks; a more canonical value is a few � 10�8 M�/year.
However, there is an order of magnitude scatter in these
mass accretion rates which is apparently real (Calvet et al., 2000;
Hartmann, 2005). It is interesting that the parameter range giving
the most reasonable _M for Myr-old disks also satisfies the tenc and
diffusion length criteria the best (rows 3–4 for A/Ao = 10 (Table 3)
and rows 2–6 for A/Ao = 30 (Table 4)). Several other combinations
of large a and low qgo can approach or at least suggest nominal
values of _M in the 10�7 M�/year range; however, the values of tenc

are very long for these, because of the low probabilities of the
appropriate clumps, given by Fp(>T), and combined with the large
a values, radial mixing over these timescales precludes any distinc-
tion in properties between contemporaneously formed planetesi-
mals a few AU apart. This constraint only applies to asteroids; no
constraint of this type is yet known for KBOs where a might well
be large.

3.6. Optimal parameter range

Looking at all the predictions together (e.g. Table 5), one tends
to favor the lower values of a combined with relatively large gas
densities (rows 3–4) because the combination leads to plausible
accretion rates, Myr-or-less encounter times, and small radial dif-
fusion lengthscales. Somewhat larger b values, closer to canonical,
might be allowable if we adopted a shorter timescale for tpa than
tsed, which brings the normalized IMFs closer to unity by decreas-
ing Pgoal. Extremely large radial diffusion ranges tend to character-
ize the larger values of a � 10�2, and unless the currently inferred
U1 of Eq. (6)), as designated by ao, qgo, and bo. N*, U*, and P* characterize the mode, or
lanetesimal-forming clump is also tabulated (tenc, in Myr; Eq. (17)), as well as the
3.5.2), and the implied mass accretion rate _M (M�/year) given the other parameters
es tpa = tsed.

Pgoal Fp(>T) tenc Da/a _M

7.6e�6 6.8e�9 5.8e+2 26.60 5.2e�9
8.5e�6 3.6e�7 1.4e+1 4.10 1.0e�8
1.2e�5 2.1e�5 3.7e�1 0.67 3.1e�8
5.5e�5 6.3e�5 1.0e�1 1.10 3.1e�7
4.4e�6 8.1e�6 3.5e�1 2.05 3.1e�7
4.9e�7 8.9e�8 1.8e+1 14.66 3.1e�7
1.2e�4 3.7e�6 6.7e�1 9.02 1.0e�6
3.8e�5 3.4e�6 3.2e�1 6.28 1.0e�6
2.7e�5 3.6e�7 4.4e+0 23.04 1.0e�6

Ao = 10 (see Fig. 4b). In this set of models the encounter times are mostly too long, and
in Fig. 4b, the desired condition P*/Pgoal is not generally satisfied. Smaller values of tpa/

Pgoal Fp(>T) tenc Da/a _M

7.5e�7 5.0e�12 4.0e+5 696.40 5.2e�9
1.1e�6 4.2e�9 4.8e+2 24.05 1.0e�8
1.2e�6 2.0e�6 1.3e+0 1.24 3.1e�8
4.9e�6 3.1e�6 6.4e�1 2.78 3.1e�7
1.7e�6 4.7e�7 3.8e+0 6.76 3.1e�7
4.9e�7 4.6e�9 3.5e+2 64.82 3.1e�7
1.1e�5 1.5e�8 5.3e+1 80.38 1.0e�6
4.7e�6 1.2e�8 3.6e+1 66.31 1.0e�6
3.4e�6 4.2e�9 1.5e+2 135.27 1.0e�6
2.4e�6 5.0e�12 1.3e+5 3916.13 5.2e�7
7.5e�6 2.2e�11 3.5e+4 2069.48 5.2e�7



Table 4
See Table 2 caption; this table replaces U1 of Eq. (6) by USek (Section 3.2.1) and assumes A/Ao = 30 (see Fig. 4c). Here, the meteoritic constraints of age variance (tenc < 1 Myr) and
radial gradients (Da/a 6 1) may be satisfied by several parameter sets (rows 2–6); note how dramatically the results vary from those in Table 3 for only a factor of three change in
solids abundance. Fig. 4c also shows how the P*/Pgoal P 1 condition is now robustly satisfied.

a qgo bo N* U* P* Pgoal Fp(>T) tenc Da/a _M

1e�4 5e�10 1e�4 17 72.7 4.1e�8 5.3e�7 1.5e�7 8.6e+0 3.23 5.2e�9
1e�4 1e�9 1e�4 15 32.4 8.6e�7 9.4e�7 3.1e�6 6.4e�1 0.88 1.0e�8
1e�4 3e�9 1e�4 10 10.5 4.8e�5 1.7e�6 4.0e�5 1.6e�1 0.44 3.1e�8
1e�3 3e�9 1e�4 10 10.5 4.8e�5 5.5e�6 4.0e�5 1.6e�1 1.39 3.1e�7
1e�3 3e�9 5e�4 10 10.4 4.8e�5 2.5e�6 4.0e�5 7.1e�2 0.93 3.1e�7
1e�3 3e�9 1e�3 10 15.7 2.4e�5 7.8e�7 2.3e�5 8.6e�2 1.02 3.1e�7
1e�2 1e�9 1e�4 15 32.4 8.6e�7 9.4e�6 3.1e�6 6.4e�1 8.79 1.0e�6
1e�2 1e�9 5e�4 15 32.3 8.6e�7 4.2e�6 3.1e�6 2.8e�1 5.88 1.0e�6
1e�2 1e�9 1e�3 15 32.4 8.6e�7 3.0e�6 3.1e�6 2.0e�1 4.94 1.0e�6
1e�2 5e�10 1e�3 17 72.7 4.1e�8 1.7e�6 1.5e�7 2.7e+0 18.15 5.2e�7
1e�2 3e�10 1e�3 18 111.6 2.0e�9 1.5e�6 5.8e�9 5.4e+1 81.31 3.1e�7
1e�2 2e�10 1e�3 19 153.5 1.6e�10 1.5e�6 3.2e�10 7.7e+2 306.49 2.1e�7
1e�2 5e�10 1e�4 17 72.7 4.1e�8 5.3e�6 1.5e�7 8.6e+0 32.27 5.2e�7
1e�2 3e�10 1e�4 19 111.7 2.3e�9 4.8e�6 7.5e�9 1.0e+2 112.86 3.1e�7
1e�2 2e�10 1e�4 19 153.5 1.6e�10 4.7e�6 3.2e�10 2.4e+3 543.95 2.1e�7

Fig. 7. Diffusion profiles for narrow annular sources at 2 AU and 4 AU, after 105,
2 � 105, 4 � 105, and 106 years. Note that after 105 years, nearly complete separa-
tion is retained between sources at the inner and outer edges of the current asteroid
belt, but mixing rapidly increases with time and by 106 years the region is fairly
well mixed.
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range of chondrule formation ages is misleading due to parent
body resetting (Section 2.1), large values of a at 2.5 AU are proba-
bly inconsistent with evidence that ordinary chondrites and CO
chondrites – having very different chemical and isotopic properties
– are about the same age (Kunihiro et al., 2004; Kurahashi et al.,
2008). We note that three grouped, H-like chondrites have been
found which are unusual for ordinary chondrites in having abun-
dant CAIs and CO-like matrix (Kimura et al., 2002). These chimeric
objects may be a sample of a parent body that accumulated at an
intermediate location between the H chondrite parent(s) and the
CO chondrite parent(s), containing a blend of components which
dominated in the two locations.

The region of parameter space which is consistent with all
the constraints we have mentioned seems to be fairly small
(a � 10�4, qgo � 1–3 � 10�9, bo � 10�4, and A/Ao � 10–30); in
this sense the agreement of the model with expectations is sen-
sitive to small changes in model parameters. However, we are
trying to match a number of independent observations at once,
with a very simple model, so we are encouraged that there is
any reasonable combination of parameters that comes close to
matching them all.

3.7. Caveats and future work

The models presented here represent the most obvious and
straightforward implications for primary accretion of the physics
of turbulent concentration of small particles, and survival of dense
clumps of them, as outlined qualitatively in a series of past papers
(CHPD01, CW06, CHS08). In order to achieve even this first sanity
check, a number of simplifying assumptions were made, and a
broad range of nebula parameters was sampled. The caveats we
feel are most important to mention (in rough priority order) are:

(1) Perhaps the most significant ‘‘known unknown” is the time-
scale tpa used to constrain the primary mass accretion rate
and assess which parameter sets can create the needed
pre-depletion mass of planetesimals (Section 3.3.1). In this
paper we assumed tpa = tsed � 100–1000 orbit periods, while
Chambers (2010) has assumed tpa = te(l) � 0.01–0.1 orbit
periods. An interesting compromise might be tpa � tL, or
about an orbit period; this might be the timescale on which
the density field is independently refreshed. A considerable
amount of study, using 3D numerical models and following
clumps for long amounts of time as they develop and dissi-
pate, is needed to understand this timescale.

(2) The survival conditions for dense clumps based on our vari-
ous thresholds (Section 3.2) lie well down a steeply falling
slope of the PDFs predicted by our cascade models; these
cascade models must be checked and tested regarding some
of the assumptions built into them. For instance, it has been
assumed that the multipliers in these models, determined
near the dissipation scale in numerical models, actually
apply over a much wider range of scales up the inertial
range. While our own tests to date have supported this
assumption, some other results suggest a scale-dependence
to the process. The form and scale-dependence (if any) of the
multipliers is fundamental (the shapes of the PDFs on their
steep edges are sensitive to details) and must be checked
more closely. The details of the cascade PDFs will have
implications for other concerns below.

(3) Some of the physical assumptions made by the model (the
density of a clump is so high that it moves at near-Keplerian
velocity) are not fully compatible with the typical values of
U � 10 that emerge from requiring the IMFs to match the
modal asteroid masses and mass production rate ‘‘goals”



Table 5
Summary of model results at 2.5 AU, combining A = 10Ao and A = 30Ao, from Tables 3 and 4.

2.5 AU A = 10Ao A = 30Ao

a qgo (g cm�3) bo _M (M�/year) Fp(>T) tenc (Myr) Da/a Fp(>T) tenc (Myr) Da/a

1e�4 5e�10 1e�4 5.2e�9 5.0e�12 4.0e+5 696.40 1.5e�7 8.6e+0 3.23
1e�4 1e�9 1e�4 1.0e�8 4.2e�9 4.8e+2 24.05 3.1e�6 6.4e�1 0.88
1e�4 3e�9 1e�4 3.1e�8 2.0e�6 1.3e+0 1.24 4.0e�5 1.6e�1 0.44
1e�3 3e�9 1e�4 3.1e�7 3.1e�6 6.4e�1 2.78 4.0e�5 1.6e�1 1.39
1e�3 3e�9 5e�4 3.1e�7 4.7e�7 3.8e+0 6.76 4.0e�5 7.1e�2 0.93
1e�3 3e�9 1e�3 3.1e�7 4.6e�9 3.5e+2 64.82 2.3e�5 8.6e�2 1.02
1e�2 1e�9 1e�4 1.0e�6 1.5e�8 5.3e+1 80.38 3.1e�6 6.4e�1 8.79
1e�2 1e�9 5e�4 1.0e�6 1.2e�8 3.6e+1 66.31 3.1e�6 2.8e�1 5.88
1e�2 1e�9 1e�3 1.0e�6 4.2e�9 1.5e+2 135.27 3.1e�6 2.0e�1 4.94
1e�2 5e�10 1e�3 5.2e�7 5.0e�12 1.3e+5 3916.13 1.5e�7 2.7e+0 18.15
1e�2 3e�10 1e�3 3.1e�7 – – – 5.8e�9 5.4e+1 81.31
1e�2 2e�10 1e�3 2.1e�7 – – – 3.2e�10 7.7e+2 306.49
1e�2 5e�10 1e�4 5.2e�7 2.2e�11 3.5e+4 2069.48 1.5e�7 8.6e+0 32.27
1e�2 3e�10 1e�4 3.1e�7 – – – 7.5e�9 1.0e+2 112.86
1e�2 2e�10 1e�4 2.1e�7 – – – 3.2e�10 2.4e+3 543.95

534 J.N. Cuzzi et al. / Icarus 208 (2010) 518–538
(Tables 1–4, Fig. 4). For U � 10, tsed is closer to 1000 orbits
than 100. Fortunately, it seems that a slower contraction
poses no obvious problems as long as the clump is stable
against ram pressure disruption; once it is stable by the cri-
teria of Section 3.1, it only becomes more stable as it shrinks
(CHS08). In fact, lower-U clumps might incur lower b if their
orbital speeds are subKeplerian. However, turbulent eddy
variations on this long a timescale might assume a larger
role in clump disruptions. Of course, higher-U clumps are
also forming, but at lower volume fractions (e.g., Fig. 3).
Future studies should explore this aspect of the apparent
preferred parameter range more carefully with numerical
models.

(4) The survival threshold U1 (or USek), involving centrifugal
balance, applies the inverse of an eddy lifetime as if it were
a true rotational frequency. This might be overly conserva-
tive, and if so, the diagonal lines associated with U1

(Fig. 3) shift to the right, increasing the values of P(U,S) in
all the primary IMFs.

(5) The survival threshold U2 involves a poorly-determined
parameter (the so-called gravitational Weber number We�G)
that quantitatively affects U2 and thus the magnitude of
P(U,S) in all the primary IMFs; numerical simulations of
clump disruption must be carried out at higher resolution
to better constrain We�G.

(6) Implicit in the primary IMF rates is that all solids at the mod-
eled place and time have sizes and densities which are suit-
able for turbulent concentration; since this is unlikely to be
the case, some other inefficiency factor must be allowed for,
which will increase the P(U,S) needed to match mass pro-
duction estimates (which are, of course, quite uncertain
themselves). As seen in Fig. 4, order-of-unity changes in A/
Ao can provide IMFs where P*/Pgoal increases significantly,
allowing room for such inefficiency. Moreover, the value of
tpa/tsed also affects P*/Pgoal (Section 3.3.1); our choice of
tpa = tsed might be relaxed and increase P*/Pgoal by 1–3 orders
of magnitude, ample to compensate for inefficiency due to
an initially broad particle size distribution. The recent work
of Zsom et al. (2010) incorporates extensive new experimen-
tal results and finds that, under a range of nebula conditions,
grain aggregates in the asteroid belt region reach a ‘‘bounc-
ing barrier” at masses not too different from those of
chondrule precursors. Such a moderately narrow size distri-
bution of chondrule precursors would influence the narrow
observed size distribution seen in chondrites, with or
without turbulent concentration, and limit the degree of
inefficiency inherent in a potentially broad pre-TC size dis-
tribution. Meteorite data show a range in mean chondrule
size across chondrite types, even while the shape of the dis-
tribution remains apparently invariant (Section 2.1). More
data of this type is needed for more chondrule types, and
for more types of objects within chondrites: metal particles,
CAIs, and so on, to see how influential the limitation of
chondrule sizes by limiting the size distribution of their
precursors might be.

(7) If bo is actually much lower than the canonical 10�3 in
regions where planetesimal precursor clumps form (as it
appears), the role of turbulent nebula pressure fluctuations
as an independent disruption mechanism should be
reassessed using detailed numerical models (Section 3.2).
Moreover, if this were a global value instead of a being
locally-determined by mass loading, as we have suggested,
the supply of material from the outer nebula to the inner
nebula (and thus A/Ao) will be affected (Cuzzi and Zahnle,
2004; Ciesla and Cuzzi, 2006). On the other hand, relaxation
of our assumption that tpa = tsed (Section 3.3.1) might allow
larger values of b to satisfy the mass creation rate con-
straints. We note that recent studies of nebulae with ‘‘dead”
or at least ‘‘dull” zones embedded within MRI-active layers
show higher gas densities than canonical for the terrestrial
planet region, and also suggest that radial pressure gradients
might be more complex than expected from simple power-
law radial dependence (Zhu et al., 2010).

(8) We have taken at face value several recent reports of nearly
Myr-variance in the ages of chondrules found in the same
chondrites. If uncontaminated by parent body resetting,
these variances are critical constraints on primary accretion;
a subset of our models indeed comes close to explaining this
large variance while explaining other chondrite properties,
but the parameters are not necessarily in the canonical
range. It is important to extend relative age measurements
on individual objects in the same meteorite to a greater vari-
ety of samples, and to address concerns that the inferred age
differences merely represent parent body resetting events
(Section 2.1).

4. Conclusions

Traditional models of incremental accretion lead to powerlaw
size distributions with equal mass per decade for particles ranging
between centimeters and (at least) tens of kilometer in size, where
runaway gravitational growth sets in; such distributions are
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increasingly thought not to be compatible with the current aster-
oid size distribution (Bottke et al., 2005; Morbidelli et al., 2009a;
Weidenschilling, 2009, 2010). We have used a very simplified
physical model to pursue the most obvious implications of the fate
of dense clumps of millimeter-size particles, which are aerody-
namically selected for preferred concentration in nebula turbu-
lence. We follow the simplest physics determining which dense
clumps avoid disruption and evolve, on periods of 100–1000 orbits,
into objects with some physical cohesion. We find that some small
fraction of these dense clumps (those forming near the nebula
midplane) can proceed to become ‘‘sandpile” planetesimals having
diameters in the 20–200 km range observed for today’s asteroids,
in an abundance which is broadly consistent with poorly known
estimates of the mass of the pre-depletion primordial belt. That
is, it appears possible for most of the mass in primitive bodies to
have simply skipped over the problematic meter–kilometer size
range.

The model is a simple one; except for the physics and statistics
of the turbulent cascade model, it contains little more than physi-
cal scaling arguments. The parameter range studied is broad but
not exhaustive, and the preferred range is not optimally centered
on ‘‘canonical” nebula conditions. Specifically, lower-than-ex-
pected headwind magnitudes, and higher-than-canonical gas den-
sities and solid/gas ratios, are needed to achieve quantitative
matches to (uncertain) estimates of required mass production
rates (Section 3.4). We have provided some thoughts on why these
conditions might not be unrealistic in view of the uncertainties,
but more work along these lines is surely needed. For instance,
the critical timescale tpa remains poorly understood even in princi-
ple (Sections 3.3.1 and 3.7; Chambers, 2010).

In spite of the fact that the optimum parameter set is perhaps
not the canonical one, we are encouraged that such a simple model
can achieve so much with any plausible range of parameters. The
model scenario potentially explains many things simultaneously:
the mean size, the size distribution, and the age dispersion of
chondrules in chondrites, and the modal mass and mass produc-
tion rate of primary asteroids. While doing this, the scenario also
provides a plausible radial mixing length for planetesimal constit-
uents between their creation and their accretion, allowing for some
radial zoning of primitive asteroids, while retaining a canonical
nebula mass accretion rate for Myr-old protoplanetary nebulae
(for which considerable scatter does exist, however). This is not
to say that we believe a final solution is at hand; there are many
serious uncertainties and unresolved issues (Section 3.7). More-
over, this scenario may not work alone; planetesimal formation
is likely to have been very complicated. Aggregation effects acting
on small particle scales before chondrules were even melted (most
recently Güttler et al. (2010) and Zsom et al. (2010)) and particle–
gas dynamics acting on larger particles than we consider (Johansen
et al., 2007) both operate in the same (turbulent) environment we
have studied.

The scenario presented here identifies a path which – while still
fraught with hazards – leads directly from freely-floating, millime-
ter-size nebula particulates, to sizeable (tens to hundreds of kilo-
meter diameter) sandpile planetesimals formed almost entirely
of size-sorted particles, which is in reasonable accord with the
meteorite record. The typical encounter time of any particular
chondrule with the clump in which it becomes a planetesimal
can be a significant fraction of a Myr – comparable to formation
age variance observed isotopically in several different chondrite
groups. The constituents can be narrowly sorted physically be-
cause primary accretion reflects local properties, but can be diverse
chemically and isotopically, with well-defined group properties
only in the ensemble, because production/alteration regions can
be separated in space by several H, and in time by nearly 1 Myr.
The primary sandpiles, made of constituents with a wide range
of formation ages and chemical and isotopic properties, are in
the size range of today’s ‘‘fossil” asteroids, and we imagine they
go on to experience an extended sequence of compaction, heating,
and sintering, perhaps even before the dynamical depletion stage
when more violent, erosive and destructive impacts lead to the ob-
jects we see today. The process is capable of starting very early in
nebula history and proceeding for a long time, as nebula solids
evolve. Primary objects of tens-hundreds of kilometer diameter
forming early will almost certainly melt extensively, while those
forming more than 1.5–2.5 Myr after CAIs will be able to remain
unmelted and ‘‘primitive”.

In this scenario, one would expect some degree of both radial
mixing and temporal evolution in the properties of chondrules
ending up in a particular chondrite. Along these lines it is useful
to recall that, while the properties of a chondrite group are well-de-
fined, there is not only the formation age diversity mentioned
above, but also a substantial variance in petrological, chemical, re-
dox, and isotopic properties amongst the constituent chondrules in
any single chondrite (Scott and Krot, 2005; Brearley and Jones,
1998). The well-defined properties of a chondrite group may only
manifest the ensemble homogeneity of their common parent body
– which itself might represent a grab-sample of constituents which
came together at a given time and place. Other planetesimals form-
ing nearby and contemporaneously might have very similar prop-
erties, but planetesimals forming at a different time, or in a
different location, would draw from a slightly evolved mixture of
essentially the same building blocks, perhaps modified by ongoing
alteration, remelting, changing oxidation environment, and/or
mixture with particles from adjacent regions, resulting in different
ensemble properties. Cuzzi et al. (2005) discuss other meteoritics
implications in more detail, including the concept of ‘‘complemen-
tarity”. Some models of the subsequent stage of accretion, charac-
terized by gravitational scatterings and collisional mergers of
primary objects, suggests even more radial diffusion (Bottke
et al., 2006; Levison et al., 2009).

As a cautionary remark, we note that the meteorite data, inter-
preted in the context of our scenario, also suggest that combinations
of nebula qg and a must have varied in time and/or space over the
region and duration of primary accretion. This is implied because
different chondrite groups with similar accretion ages (ordinary
and CO chondrites) have noticeably different modal chondrule sizes
– varying by a factor of several (King and King, 1978; Rubin, 1989;
Scott and Krot, 2005; Brearley and Jones, 1998; Kurahashi et al.,
2008). In the context of turbulent concentration, because all chond-
rules are after all made mainly of silicates and have comparable
densities, variations in a and qg are the most obvious way to do this
(CHPD01, Fig. 1).

Extension of the scenario to the Kuiper Belt region has also been
explored; IMFs show a similar preference for 10–100 km diameter
objects. Mass creation rates assuming canonical cosmic abundance
tend to fall short of estimates for KBOs (which are rather poorly
known, however), but enhanced solid abundances over cosmic dra-
matically improve the agreement with mass production estimates.
Moderately flat nebula gas density distributions are substantially
more favorable to the extension of this scenario from the asteroid
belt to 30 AU. Under such conditions, and given the strong depen-
dence of primary accretion on local solids abundance, the diversity
of KBOs – from thoroughly melted, water-ice-mantled objects such
as Haumea to those retaining abundant ‘‘supervolatiles” – might be
explained by the same drawn-out accretionary process as we envi-
sion for the asteroids. The specific scenario explored here assumed
KBO initial formation between 16 and 30 AU and subsequent
dynamical emplacement to 30–44 AU; this is not a requirement
of our model, however. Crude scaling estimates suggest that the
mass of the ‘‘cold classical” KBOs could be formed in situ, by the
physics discussed here, from a local mass density that would not
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lead to excessive migration of Neptune or a problematic subse-
quent cleanup. More refined future models of planetesimal forma-
tion in the 16–30 AM region should, for self-consistency, strive to
produce roughly twice the mass we assumed for this first assess-
ment, to allow for the cores of the ice giants themselves.
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Appendix A

Here we provide some notational clarifications to better con-
nect the distribution functions P(U,S) and Fp(U,S) of this paper to
similar functions in CHPD01 and Hogan and Cuzzi (2007). We first
note that we have defined P(U,S) in this paper as a probability per
unit log10(U) and log10(S) (as in Chambers, 2010; a hand check for
identical parameters shows that our PDF contours are in very good
agreement with those of Chambers). Hogan and Cuzzi (2007) are
not specific about the use of log10 vs. loge = ln, but here we are
more explicit. We define P

0
(U,S), which Hogan and Cuzzi (2007)

call P(U,S), as a true differential probability density per unit U
and per unit S. Since, for instance, S = elnS, logS = loge 
 lnS and
dlogS = loge 
 dS/S. We require the functions P(U,S) and P

0
(U,S)

to be separately normalized:
R1

0

R1
0 P0ðU; SÞdUdS ¼ 1 ¼

R1
0

R1
0

PðU; SÞd log UdlogS. Since P
0
(U,S)dUdS = P

0
(U,S)(U 
 dlogU/loge)

(S 
 dlogS/loge), it follows that

P0ðU; SÞUS ¼ log2ePðU; SÞ:

The quantity P
0
(U,S)US was proposed by Hogan and Cuzzi

(2007) as a convenient estimate of effective volume fraction ‘‘at”
(U,S), as it covers the range (U ± DU/2, S ± DS/2) with DU = U
and DS = S, but here we use instead the quantity P(U,S) in this role.
The difference is a factor of log2e, and can be explained by P(U,S)
having a larger effective binning size DU = U/loge, DS = S/loge. In
fact, we find that P(U,S) actually better approximates the more for-
mally exact integrals (below) than does P

0
(U,S)US.

To be even more specific, we define P(U,S) by taking the num-
ber of cascade outcomes H which lie in bins at (U,S) within some
bin size dlogU 
 dlogS = d2, and normalizing by the total number
n of cascade outcomes so P(U,S) = H(U,S,d)/nd2. This makes
P(U,S) also a probability (fractional volume) density, but per unit
log10(U), per unit log10(S). It is easy to show that using this defini-
tion and P

0
(U,S)US = log2 eP(U,S), P(U,S) and P

0
(U,S) are both auto-

matically normalized:Z 1

0

Z 1

0
P0ðU; SÞdUdS ¼

Z 1

0

Z 1

0
PðU; SÞd log U 
 d log S ¼ 1:

We also note that the particle concentration C of CHPD01 is
simply related to the mass loading factor U of this paper and
CHS08. Specifically, C = np/hnpi = qp/h qpi, where np is the number
of particles per unit volume, hnpi is its global average, and all the
particles are of equal mass in our simple treatment. Thus U = qp/
qg = A

0
C, where A

0
= 0.01A/Ao. As in CHPD01 we must distinguish

between the fraction of volume found at some (U,S) and the
fraction of particles found there, because the particles are not ran-
domly distributed in (U,S) space. Because the volume and particle
fractions of CHPD01 (FV(C),Fp(C)) are normalized, they can also be
written as FV(U),Fp(U). Then recall that FV ðUÞ ¼

R1
0 P0ðU; SÞdS so

FV ð> UÞ ¼
R1

U

R1
0 P0ðU0; SÞdU0 dS! 1 as U ? 0, as in CHPD01. We

define a particle fraction Fp(U,S) /UP
0
(U,S), which is the 2D

extension of the function Fp(C) / CFV(C) of CHPD01, and like it,
must be separately normalized. We define a normalization con-
stant cp such that cp

R1
0

R1
0 UP0ðU; SÞdUdS ¼ 1; it can easily be

shown that the same cp implies that cp
R1

0

R1
0 UPðU; SÞd log U


d log S ¼ 1.
The closest analog to Fp(C) of CHPD01 is FpðUÞ ¼ cpUFV ðUÞ ¼

cpU
R1

0 P0ðU; SÞdS, and has the equivalent cumulative function
Fp(>U). However, for the purpose of the current paper we are
working in a more profoundly 2D regime, where both U and S
are important. Thus we will work with the cumulative of
Fp(U,S) = cpUP

0
(U,S) that represents the fraction of particles lying

in clumps that exceed all of our thresholds (U1,U2,Smin) for
sandpile formation or primary accretion. Any clump lying above
the entire Smin–U1–U2 threshold line is capable of becoming a
sandpile (Section 3.3.1), and encounters of a wandering particle
with all of them should be included in estimation of tenc

(Section 3.5.1). Thus we define Fp(>T) – the particle fraction lying
in all proto-sandpile-clumps at any given time – as an integral over
the 2D segment of (U,S) space lying above the threshold value
UT(S) = max(U2,U1(S)) and to the right of Smin (see Fig. 3). That is,

Fpð> TÞ ¼
R1

Smin

R1
UT ðSÞ

UP0ðU; SÞdUdSR1
0

R1
0 UP0ðU; SÞdUdS

¼ cp

Z 1

Smin

Z 1

UT ðSÞ
UP0ðU; SÞdUdS; ð18Þ

where the constant cp = Ao/A. This cumulative measure will be
dominated by clumps falling closest to the threshold line, and in
particular at the peak of the IMF (Fig. 3) which we characterize by
U = U* and P(U*,S*) = P*. For example (see Section 3.3.1 and Cham-
bers, 2010) the total primary accretion rate of planetesimals _Mpa

can be written as

_Mpa ¼
2p a2

2 � a2
1

� �
Hb1=2

tpa

Z 1

Smin

Z 1

UT ðSÞ
ðUqgÞP

0ðU; SÞdUdS;

where the double integral is over the entire range of U, S where
sandpiles can form, the integrand is the product of particle mass
per unit volume in a clump Uqg times the volume fraction in clumps,
and the numerator is the volume in which this transpires using only
a narrow region of thickness Hb1/2 near the midplane. The denom-
inator tpa is some formation timescale, which we take as tsed but
could be shorter (Section 3.3.1; Chambers, 2010). We can rewrite
this as

_Mpa ¼
2p a2

2 � a2
1

� �
Hb1=2qg

tpa

Z 1

Smin

Z 1

UT ðSÞ
UP0ðU; SÞdUdS:

From expressions given above, it is clear that
R1

Smin

R1
UT ðSÞ

UP0

ðU; SÞdUdS ¼ Fpð> TÞ=cp ¼ Fpð> TÞA=Ao. Meanwhile we could also

approximate _Mpa as

_Mpa ¼
2p a2

2 � a2
1

� �
Hb1=2

tpa
ðU�qgÞP

�ðU�; S�Þ

where the peak of the IMF is at (N*,U*,S*) and has associated
P(U,S) = P*. Physically this amounts to saying that the bulk of the
primary accretion is that which occurs near the peak of the IMF
and neglecting the contributions from further down the IMF, but
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treating the volume fraction as a binned value over a range
DU* = U*/loge, DS* = S*/loge as described above, based on our
definition of P(U,S). Comparison of the above equations shows that
taking U*P*(U*,S*) = Fp(>T)A/Ao makes the expressions equal. We
make use of this in Section 3.3.1, using numerical validation (in
Tables 1–4) that U* P*(U*,S*) = Fp(>T)A/Ao is indeed valid to tens of
percent. As described in Section 3.5.1 and CHPD01, we can also
associate Fp(>T) with the fractional time Ft(>T) spent by a given
particle in proto-sandpile-clumps.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.icarus.2010.03.005.
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